

 Unit-I : Introduction to Data Structure

B. Sc. I (CBCS)
Semester-II
2023-2024

PROF. V. V. AGARKAR
Assistant Professor & Head

Department of Computer Science

Shri. D. M. Burungale Science & Arts College, Shegaon, Dist. Buldana

COMPUTER
 SCIENCE

1CS2 : Data Structure & OOPS

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (1) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

UNIT – I

DATA STRUCTURE

Syllabus: Data structure: Introduction to data structure, types of data structure:

Primitive and Non-primitive, Linear and Non-linear data structure, Data structure

operations. Arrays: Definition and concepts, Memory representations,

Operations: Traversing, Insertion, Deletion. Stacks: Definition and concepts,

Memory representations, Operations: Traversing, Insertion, Deletion.

Introduction

A data structure is an arrangement of data in a computer’s memory. A data structure

is a way of organizing data that considers not only the items stored, but also their relationship

to each other. Advance knowledge about the relationship between data items allows

designing of efficient algorithms for the manipulation of data. A data structure not only

defines what elements it may contain, it also supports a set of operations on these elements.

Data structure = organized data + operations

The data structure deals with the study of how the data is organized. Data structure is

the most convenient way to handle data of different data types for a known problem.

Areas in which data structures are applied (Applications)

 Compiler Design Numerical Analysis,

 Operating System Graphics,

 Database Management System Artificial Intelligence,

 Statistical analysis package Simulation

Type of Data Structures

The data structures can be classified into two different types namely

1) Primitive data structures, and

2) Non - primitive data structures

1) Primitive data structures

The data structures which can be directly operated are called primitive data structures.

The integer, float, character etc. are some of the primitive data structures. Operations

like deletion, selection and updation can be carried out on primitive data structures.

2) Non - primitive data structures

The data structures which are not primitive means which cannot be manipulated

directly, instead they are derived from primitive data structures are called non-primitive

data structures. Non-primitive data structures can be again classified into two different

types namely (i) Linear data structure and (ii) Non-Linear data structure.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (2) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

1) Linear Data Structure: A Data structure where all data elements are arranged

sequentially or linearly and each member element is connected to its previous and

next adjacent element. Here a single level is involved and hence can be traversed in

a single run. These are easy to implement because computer memory is also linear.

Examples of linear data structures are array, stack, queue, linked list, etc.

2) Non-Linear Data Structure: Data structures where data elements are not arranged

sequentially or linearly are called non-linear data structures. In a non-linear data

structure, single level is not involved rather multiple levels are involved. Therefore,

all the elements can’t be traversed in single run only. These are not easy to

implement. Examples of non-linear data structures are trees and graphs.

 Data Structure

Primitive Non-Primitive

Integer

Float Linear Non-linear

Character

Boolean

 Lists Trees

 Arrays Graphs

 Stacks Tables

 Queues Sets

 Linked List

[Fig. 1 : Classification of Data Structure]

Data structure operations

The data can be processed by means of certain operations. Following are some

operations with data structures:

1. Traversing: The traversing operation allows a user to access or visit each element within

data structure exactly once so that certain items in the element may be processed.

2. Searching: The searching operation allows finding out the location of the element using a

given key value within a data structure to check whether the element is present or not.

3. Insertion: The insertion operation allows adding a new element into a data structure at

the specified position.

4. Deletion: The deletion operation allows removing an element from the data structure.

5. Sorting: The sorting operation allows arranging the elements in some logical order

(alphabetically, ascending or descending order).

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (3) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

6. Merging: The merging operation allows combining the elements from two or more sorted

data structures into a single sorted data structure.

7. Copying: The copying operation allows copying the contents from a data structure to

another data structure.

8. Concatenation: The concatenation operation allows joining the elements of one data

followed by another data structure into a new resultant data structure.

Linear Arrays (or Arrays)

An array or linear array is a finite, ordered collection of homogeneous data elements.

Array is finite because it contains only limited number of elements; and ordered, as all the

elements are stored one by one in contiguous locations of computer memory in a linear

ordered fashion. All the elements of an array are of the same data type (say, integer) only and

hence it is termed as collection of homogeneous elements.

If we choose the name A for the array, then the elements of A are denoted by

subscript notation, as follows:

A1, A2, A3, ..., An

or by the parenthesis notation

A(l), A(2), A(3), ..., A(N)

or by the bracket notation

A[1], A[2], A[3], ..., A[N]

Regardless of the notation, the number K in A[K] is called a subscript and A[K] is

called a subscripted variable.

Example:

Let DATA be a 5-element linear array of integers such that

 DATA[1]=247 DATA[2]=56 DATA[3]=429 DATA[4]=135 DATA[5]=87

Sometimes such an array denotes by simply writing

 DATA: 247, 56, 429, 135, 87

The array DATA is frequently pictured as in Fig. 2(a) or Fig. 2(b).

 DATA

1 247 DATA

2 56 247 56 429 135 87

3 429 1 2 3 4 5

4 135

5 87

(a) (b)

[Fig. 2 : Array]

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (4) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

Representation of Linear Arrays in memory

The memory of computer is simply a sequence of

addressed locations as shown in Fig. 3. Let LA be a

linear array stored in the memory of computer.

 As the elements of the array LA are stored in

the consecutive memory cells, the computer does not

need to keep track of the address of every element of

the array. It only needs to keep track of the address of

the first element of the array which is called Base

Address of an array. Using this base address, the

computer calculates the address of any element of the

array by using the following formula:

 Address(LA[k]) = Base Address +

 w(k - LB)

Where w is the size of the data type of the array LA

and LB is lower bound of the array.

1 Base Address

2

3

 :

:

k

 :

:

N

[Fig. 3: Memory representation

of Array]

Traversing linear arrays

Traversing means accessing and processing (frequently called visiting) each element of

array exactly once. The following algorithm traverses a linear array LA.

Algorithm

Traverse(LA, LB, UB, PROCESS)

Here LA is a linear array with lower

bound LB and upper bound UB. This

algorithm traverses LA applying an

operation PROCESS to each element of LA.

1. [Initialize counter]

 Set K = LB

2. Repeat Steps 3 and 4 while K <= UB

3. [Visit element]

 Apply PROCESS to LA[K]

4. [Increase counter]

 Set K = K + 1

 [End of Step 2 loop]

5. Exit

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (5) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

Inserting into a Linear Array

Inserting refers to the operation of adding one new element to the array. Inserting an

element at the “end” of an array can be easily done, but, to insert an element in the middle (or

at the beginning), some of the elements must be moved downward to new locations to

accommodate the new element and keep the order of the elements.

The following algorithm inserts a data element ITEM into the K
th

 position in a linear

array LA with N elements. The first four steps create space in LA by moving downward one

location each element from the K
th

 position on. These elements are moved in reverse order—

i.e. first LA[N], then LA[N-1], and last LA[K]; otherwise data might be erased.

Algorithm

INSERT(LA, N, K, ITEM)

Here LA is a linear array with N elements

and K is a positive integer such that K <=

N. This algorithm inserts an element ITEM

into the K
th
 position in LA.

1. [Initialize counter]

 Set J = N

2. Repeat Steps 3 and 4 while J >= K

3. [Move J
th
 element downward]

 Set LA[J+1] = LA[J]

4. [Decrease counter]

 Set J = J-1

 [End of Step 2 loop]

5. [Insert element]

 Set LA[K] = ITEM

6. [Reset N]

 Set N = N + 1

7. Exit.

Deleting from a Linear Array

Deleting refers to the operation of removing one of the elements from array. Deleting

an element at the “end” of an array presents no difficulties, but deleting an element

somewhere in the middle of the array would require that each subsequent element be moved

one location upward in order to “fill up” the array.

The following algorithm deletes the K
th

 element from a linear array LA and assigns it

to a variable ITEM.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (6) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

Algorithm

DELETE(LA, N, K, ITEM)

Here LA is a linear array with N elements and

K is a positive integer such that K <= N. This

algorithm deletes the K
th
 element from LA.

1. Set ITEM = LA[K]

2. Repeat for J = K to N — 1:

 [Move J+1
st
 element upward]

 Set LA[J] = LA[J+1]

 [End of loop]

3. [Reset the number N of elements in LA]

 Set N = N — 1

4. Exit.

Stack

A stack is a linear structure in which items may be inserted or removed only at one

end (same end) called the top of the stack. That means it is possible to remove elements from

a stack in reverse order from the insertion of elements into the stack. Thus, a stack data

structure has the LIFO (Last In First Out) property.

Generally, two operations are associated with the stacks named Push & Pop.

 Push is an operation used to insert an element at the top.

 Pop is an operation used to delete an element from the top

 TOP =0 TOP =1 TOP =2 TOP =3 TOP =4

5 5 5 5 5

4 4 4 4 4 DD

3 3 3 3 CC 3 CC

2 2 2 BB 2 BB 2 BB

1 1 AA 1 AA 1 AA 1 AA

Stack

Empty

Push

AA

Push

BB

Push

CC

Push

DD

 [Fig. 4: PUSH operations on to Stack.]

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (7) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

 TOP =4 TOP =3 TOP =2 TOP =1 TOP =0

5 5 5 5 5

 4 DD 4 4 4 4

3 CC 3 CC 3 3 3

2 BB 2 BB 2 BB 2 2

1 AA 1 AA 1 AA 1 AA 1

Initial

Stack

Pop

DD

Pop

CC

Pop

BB

Stack

Empty

 [Fig. 5: POP operations on to Stack.]

Representation of stack in the Computer’s memory

Stacks may be represented in the computer in various

ways, usually by means of a linear array. Here stack

is represented by linear array STACK, TOP is a

pointer variable which contains the location of the top

element of STACK. Initially it is assign to 0 to show

that stack is empty and MAXSTACK represents the

maximum possible number of elements in the stack.

When there is no element in the stack to remove then

this is known as stack underflow. When the stack

contains equal number of elements as per its capacity

and no more elements can be added such status of

stack is known as stack overflow.

Fig. 6 shows array representation of stack. The TOP

is pointing to 4 which says that stack has four items

and as the MAXSTACK = 10, there is still space for

accommodating six elements.

1 ITEM1

2 ITEM2

3 ITEM3

4 ITEM4 TOP

5

6

7

8

9

10 MAXSTACK

[Fig. 6 : Memory representation

of Stack]

Applications of Stack

Various applications of stack are:

1. Expression conversion. 4. Decimal to binary conversion.

2. Expression Evaluation. 5. Reversing a string.

3. Parsing well formed parenthesis. 6. Storing function calls.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (8) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

Adding (pushing) an item onto the stack

To add an item on to stack PUSH operation is performed. While executing procedure

PUSH, first test whether there is a room in the stack for the new item; if not, then the

condition Overflow occurs. Following is algorithm to push an item on to stack:

Algorithm

PUSH(STACK, TOP, MAXSTACK, ITEM)

Step 1: [Check for stack overflow]

 If TOP = MAXSTACK

Then print “Stack overflow” and exit.

Step 2: [Increment the TOP value by one]

 TOP = TOP + 1

Step 3: [Insert the ITEM in new TOP position]

 STACK[TOP] = ITEM

Step 4: Exit.

Deleting (popping) an item from the stack

To delete an item from stack POP operation is performed. While executing procedure

POP, first test whether there is an element in the stack to be deleted; if not, then the

condition Underflow occurs. Following is algorithm to pop an item from stack:

Algorithm

POP(STACK, TOP, ITEM)

Step 1: [Check whether the stack is empty]

 If TOP = 0

 then print “Stack underflow” and exit.

Step 2: [Assigns TOP element to ITEM]

 ITEM = STACK[TOP]

Step 3: [Decrement the TOP value by one]

 TOP = TOP - 1

Step 4: Exit.

Traversing the stack

Traversing means accessing and processing (frequently called visiting) each element of

the stack exactly once. The following algorithm traverses a stack STACK.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (9) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

Algorithm

TRAVERSE(STACK, TOP, MAXSTACK)

Step 1: [Check for stack underflow]

 If TOP = 0

Then print “Stack underflow” and exit.

Step 2: [Initialize counter]

 Set K = TOP

Step 3: Repeat step 4 and 5 while K > 0;

Step 4: [Visit element]

 Apply PROCESS to STACK[K]

Step 5: [Decrease counter]

 Set K = K - 1

 [End of Step 3 loop]

Step 6: Exit.

 Algorithm

Algorithm is a step-by-step method of solving a problem or making decisions.

Characteristics of Algorithms:

 Following are the five important characteristics of an algorithm:

1) Finiteness:

An algorithm must terminate after a finite number of steps and further each step must be

executable in finite amount of time.

2) Definiteness (no ambiguity):

Each steps of an algorithm must be precisely defined; the action to be carried out must

be rigorously and unambiguously specified for each case.

3) Inputs:

An algorithm has zero or more but only finite, number of inputs.

4) Output:

An algorithm has one or more outputs. The outputs have specific relation to the inputs,

where the relation is defined by the algorithm.

5) Effectiveness:

An algorithm should be effective. This means that each of the operation to be performed

in an algorithm must be sufficiently basic that it can, in principle, be done exactly and

in a finite length of time, by person using pencil and paper.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT I: Data Structure

 (10) Prof. V. V. AGARKAR
D .M .Burungale Science & Arts College, Shegaon

 Differences between Linear and Non-Linear data structures:

Linear data structure Non-Linear data structure

1. In a linear data structure, data elements

are arranged in a linear order where each

and every element is attached to its

previous and next adjacent.

In a non-linear data structure, data

elements are attached in hierarchically

manner.

2. In linear data structure, all data elements

are present at a single level.

In non-linear data structure, data elements

are present at multiple levels.

3. Linear data structures can be traversed

completely in a single run.

Non-linear data structures are not easy to

traverse and needs multiple runs to be

traversed completely.

4. In a linear data structure, memory is not

utilized in an efficient way.

In a non-linear data structure, memory is

utilized in an efficient way.

5. Its examples are: array, stack, queue,

linked list, etc.

Its examples are: trees and graphs.

Sant Gadge Baba Amravati University, Amravati

B. Sc. Part ONE (Semester – II) CBCS Examination

Questions Asked in Previous University Exams

 Summer 2023 (AD-4624)

2. a) What is stack? Explain algorithm to insert and remove elements from the stack. 7

 b) What are different operations performed on the data structure? Explain. 3

OR

3. a) What is data structure? Explain the types of data structure with suitable example. 7

 b) Explain an algorithm to delete an element from the array. 3

 Winter 2023 (AE-4606)

2. A) What is stack? Explain the concept of stack. 3

 B) What is array? Explain the concept of array and its memory representation. 7

OR

3. A) Define & explain Primitive & Non-Primitive data structure with example. 7

 B) Explain the operations performed on Data Structure. 3

