

 Unit-I : Exception Handling & Multithreading

B. Sc. III
Semester-VI
2023-2024

PROF. V. V. AGARKAR
Assistant Professor & Head

Department of Computer Science

Shri. D. M. Burungale Science & Arts College, Shegaon, Dist. Buldana

COMPUTER
 SCIENCE

6S : Advanced Java & VB.net

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (1) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Unit I

Exception Handling and Multithreading: Exception Handling: Concept of

Exception handling, Type of Exception, Try, Catch, and Finally, Multiple Catch

blocks, Nested Try Statements, throw, throws. Multithreading: Multithreading

concept, life cycle, creating and running thread, thread priority.

Introduction:

When a new program is created it‟s rare that it runs successfully at first time. It is

common that users make some mistakes while developing or typing program. These mistakes

might lead to an error causing to the program to produce unexpected results. Errors are the

mistakes or faults in the program. An error may produce an incorrect output or may terminate

the execution of the program unexpectedly or even may cause the system to crash. When an

error occurs in a program the interpreter will display error massage and immediately stops the

execution of program and will not execute the remaining code in a program. Errors may

broadly be classified in two categories:

1) Compile-time errors

2) Run-time errors

1) Compile-time errors

All syntax errors will be detected and displayed by the Java compiler and therefore these

errors are known as compile-time errors. Whenever the compiler displays an error, it will

not create the .class file. It is therefore necessary that we fix all the errors before we can

successfully compile and run the program. Most of the compile-time errors are due to

typing mistakes.

2) Run-time errors

Sometimes, a program may compile successfully creating the .class file but may not run

properly. Such programs may produce wrong results due to wrong logic or may terminate

due to errors such as stack overflow or other common run-time errors. These kinds of

errors are called as run-time errors. When such errors ate encountered, Java typically

generates an error message and aborts the program.

If a program has a run-time error, and instead of terminating the program if you want

the program to continue with the execution of the remaining code then it is important to

detect and manage properly all the possible error conditions in the program so that the

program will not terminate or crash during execution.

Exception handling

An exception is an unwanted condition that is caused by a run-time error in the

program which interrupts the normal flow of the program. There are several reasons that can

cause exceptions in a program, for example, opening a non-existing file in your program,

network connection problem, and bad input data provided by user etc. When an exception

occurs, program execution gets terminated and a system generated error message will display.

These messages are not user friendly so a user will not be able to understand what went

wrong. Java allows the users to handle the exceptions. Exception handling ensures two

things:

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (2) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

1. Meaningful message can be provided to the user about the errors rather than a system

generated message, which may not be understandable to a user.

2. The flow of the program doesn‟t break when an exception occurs.

In Java, exception is an object that describes the exception. When inside a method an

exception arises, an object representing that exception is created and thrown in the method

that caused the error (creating the exception object and handling it to the run-time system is

called throwing an exception). That method may choose to handle the exception itself, or pass

it on to another method. At some point, the exception is caught and processed. Exceptions

can be generated by the Java run-time system, or they can be manually generated by users‟

code.

The purpose of exception handling mechanism is to provide a means to detect and

report an “exceptional circumstances” so that appropriate action can be taken. The

mechanism suggests incorporation of a separate error handling code that performs the

following tasks:

1. Find the problem (Hit the exception)

2. Inform that an error has occurred (Throw the exception)

3. Receive the error information (Catch the exception)

4. Take corrective actions (Handle the exception)

The error handling code basically consists of two segments, one to detect errors, and

to throw exception and the other to catch exceptions and to take appropriate action.

Types of Exception

[Fig. 1: Types of Exceptions]

All exception types are subclasses of the built-in class Throwable. Thus, Throwable

is at the top of the exception class hierarchy. Throwable are two subclasses that partition

exceptions into two distinct types: Error and Exception.

1. Errors

Errors represent irrecoverable conditions such as Java virtual machine (JVM) running out

of memory, memory leaks, stack overflow errors, library incompatibility, infinite

recursion, etc.

Errors are usually beyond the control of the programmer and we should not try to handle

errors.

Throwable

Error Exception

RuntimeException IOException

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (3) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

2. Exceptions

Exceptions can be caught and handled by the program. When an exception occurs within

a method, it creates an object. This object is called the exception object. It contains

information about the exception such as the name and description of the exception and

state of the program when the exception occurred. There are two types of exceptions:

RuntimeException and IOException.

i) RuntimeException (unchecked exceptions)

A runtime exception happens due to a programming error. They are also known

as unchecked exceptions. These exceptions are not checked at compile-time but at

run-time. Some of the common runtime exceptions are:

 Improper use of an API - IllegalArgumentException

 Null pointer access (missing the initialization of a variable) -

 NullPointerException

 Out-of-bounds array access - ArrayIndexOutOfBoundsException

 Dividing a number by 0 - ArithmeticException

ii) IOException (checked exception)

An IOException is also known as a checked exception. They are checked by the

compiler at the compile-time and the programmer is prompted to handle these

exceptions. Some of the examples of checked exceptions are:

 Trying to open a file that doesn‟t exist results in FileNotFoundException

 Trying to read past the end of a file.

 There are some common exceptions that are listed in following table:

Exception Type Cause of Exception

ArithmeticException Caused by math errors such as division by zero

ArrayIndexOutOfBoundsException Caused by bad array indexes

ArrayStoreException Caused when a program tries to store the wrong

type of data in an array

FileNotFoundException Caused by an attempt to access a nonexistent file

IOException Caused by general I/O failures, such as inability

to read from a file

NullPointerException Caused by referencing a null object

NumberFormatException Caused when a conversion between strings and

numbers fails

OutOfMemoryException Caused when there‟s not enough memory to

allocate a new object

SecurityException Caused when an applet tries to perform an action

not allowed by the Browser‟s security settings

StackOverFlowException Caused when a system runs out of stack space

StringIndexOutOFBoundsException Caused when a program attempts to access a

nonexistent character position in a string

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (4) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Exception Handling Mechanism

Java exception handling is managed via five keywords: try, catch, throw, throws,

and finally. Program statements that want to monitor for exceptions are contained within a

try block. If an exception occurs within the try block, it is thrown. A piece of code can

catch this exception (using catch) and handle it in some rational manner. System-generated

exceptions are automatically thrown by the Java run-time system. To manually throw an

exception, use the keyword throw. Any exception that is thrown out of a method must be

specified as such by a throws clause. Any code that absolutely must be executed after a try

block completes is put in a finally block.

The basic concepts of exception handling are throwing an exception and catching it.

This is illustrated in Fig. 2.

 try Block

Statements that causes
an exception

Exception object

created

Throws

Exception

Object

 catch Block

Statements that
handles the exception

Exception handler

 [Fig. 2: Exception handling mechanism]

 try

 {

// block of code to monitor for errors

 }

 catch (ExceptionType1 exOb)

 {

// exception handler for ExceptionType1

 }

 finally

 {

// block of code to be executed after try block ends

 }

The exception handling mechanism consists of three blocks:

1) The try block

2) The catch block

3) The finally block

1) The try block

To handle a run-time error, the try block can have one or more statements that could

generate an exception. If anyone statement generates an exception, an exception object is

created and thrown outside the try block, once an exception is thrown, program control

transfers out of the try block into the catch block. The remaining statements in the try

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (5) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

block are skipped and execution jumps to the catch block that is placed next to the try

block. Hence the remaining statements in the try block are never executed.

The statements that are protected by try must be surrounded by curly braces. (That is,

they must be within a block.) You cannot use try on a single statement.

2) The catch block

Immediately following the try block, includes a catch block that contains exception

handling statements. The ExceptionType is the type of exception that has occurred. Once

the catch statement has executed, program control continues with the next line in the

program following the entire try/catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to

those statements specified by the immediately preceding try statement. A catch

statement cannot catch an exception thrown by another try statement (except in the case

of nested try statements).

3) The finally block

Java supports another statement known as finally statement that can be used to handle

an exception that is not caught by any of the previous catch statements. finally block

can be used to handle any exception generated within a try block. It may be added

immediately after the try block or after the last catch block.

When a finally block is defined, this is guaranteed to execute, regardless of whether or

not the exception is thrown. As a result it can be used to perform certain house-keeping

operations such as closing files and releasing system resources etc.

Example:

Following program includes a try block and a catch clause that processes the

ArithmeticException generated by the division-by-zero error:

// Java program to demonstrate ArithmeticException

class Exception1

{

 public static void main(String args[])

 {

 int d, a;

 try

 { // monitor a block of code

 d = 0;

 a = 42 / d;

 System.out.println("Result = " + a);

 }

 catch (ArithmeticException e)

 { // catch divide-by-zero error

 System.out.println(“Can’t divide a number by zero.”);

 }

 System.out.println(“After catch statement.”);

 }

}

This program generates the following output:

Can’t divide a number by zero.

After catch statement.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (6) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To

handle this type of situation, user can specify two or more catch clauses, each catching a

different type of exception. When an exception is thrown, each catch statement is inspected

in order, and the first one whose type matches that of the exception is executed. After one

catch statement executes, the others are bypassed, and execution continues after the

try/catch block.

 try

 {

// block of code to monitor for errors

 }

 catch (ExceptionType1 exOb)

 {

// exception handler for ExceptionType1

 }

 catch (ExceptionType2 exOb)

 {

// exception handler for ExceptionType2

 }

 When multiple catch statements are used, it is important to remember that exception

subclasses must come before any of their superclasses. This is because a catch statement

that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a

subclass would never be reached if it came after its superclass.

Example :

Following program includes a try block and two catch clauses that, one processes the

ArithmeticException generated by the division-by-zero error and another processes

the ArrayIndexOutOfBoundsException error:

// Java Program to demonstrate multiple catch statements.

class MultiCatch

{

 public static void main(String args[])

 {

 try

 {

 int a = args.length;

 System.out.println(“a = “ + a);

 int b = 42 / a;

 int c[] = { 1 };

 c[42] = 99;

 }

 catch(ArithmeticException e)

 {

 System.out.println(“You should not divide a number by zero”);

 System.out.println(“Java Exception : ”+e);

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

System.out.println(“You cannot access array elements outside of the

limit”);

 System.out.println(“Java Exception : ”+e);

 }

 System.out.println(“After try/catch blocks.”);

 }

}

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (7) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

This program will cause a division-by-zero exception if it is started with no command line

arguments, since a will equal zero. It will survive the division if you provide a command-

line argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the

program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch

a = 0

You should not divide a number by zero

Java Exception : java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch 25

a = 1

You cannot access array elements outside of the limit

Java Exception : java.lang.ArrayIndexOutOfBoundsException: 42
After try/catch blocks.

Nested try Statements

Sometimes a situation may arise where a part of a block may cause one error and the

entire block itself may cause another error. In such cases, exception handlers (the try

statement) have to be nested. That is, a try statement can be inside the block of another try.

When a try statement is present in another try statement then it is called the nested try

statement. Each time a try block does not have a catch handler for a particular exception, then

the catch blocks of parent try block are inspected for that exception, if match is found that

that catch block executes. If neither catch block nor parent catch block handles exception

then the system generated message would be shown for the exception. The syntax of nested

try statement is as follows:

try

{

 statement 1;

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

Example:

// Nested try block

class NestedTry

{

 public static void main(String args[])

 {

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (8) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 try

 {

 int a[] = {3, 4, 6, 5, 9, 1, 7, 2, 8, 0};

 // displaying element at index 8

 System.out.println(“Element at index 8 = “+a[8]);

 // another try block

 try

 {

 System.out.println(“Division”);

 int res = 100/ 0;

 }

 catch (ArithmeticException ex2)

 {

System.out.println(“Sorry! Division by zero isn't

feasible!”);

 }

 }

 catch (ArrayIndexOutOfBoundsException ex1)

 {

 System.out.println(“ArrayIndexOutOfBoundsException”);

 }

 }

}

throw

It is possible in user‟s program to throw an exception explicitly, using the throw

keyword. User can define his own set of conditions or rules and throw an exception

explicitly. For example, user can throw ArithmeticException when a number is

divided by 5, or any other numbers. The throw keyword explicitly throws an exception

from a method or any block of code. User can throw either checked or unchecked

exception. The throw keyword is mainly used to throw custom exceptions. The throw

statement can only throw one exception at a time. The general form of throw is :

throw ThrowableInstance;

or

throw new exception_class(“error message”);

Here, ThrowableInstance must be an object of type Throwable or a subclass of

Throwable. Primitive types, such as int or char, as well as non-Throwable classes,

such as String and Object, cannot be used as exceptions. There are two ways you can

obtain a Throwable object: using a parameter in a catch clause, or creating one with

the new operator.

The flow of execution of the program stops immediately after the throw statement is

executed and the nearest enclosing try block is checked to see if it has

a catch statement that matches the type of exception. If it finds a match, controlled is

transferred to that statement otherwise next enclosing try block is checked and so on. If

no matching catch is found then the default exception handler will halt the program.

Example:

1) throw new IOException(“sorry device error”);

2) throw new ArithmeticException(“not valid”);

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (9) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

throws

If a method can cause an exception that it does not handle, then it must specify this to the

callers so that callers can protect themselves against that exception. This can be done by

including a throws clause in the method‟s declaration. A throws clause lists the types

of exceptions that a method might throw. This is necessary for all exceptions, except

those of type Error or RuntimeException, or any of their subclasses. All other

exceptions that a method can throw must be declared in the throws clause. If they are

not, a compile-time error will result.

The general form of a method declaration that includes a throws clause is:

type method-name(parameter-list) throws exception-list

{

 // body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Example:

// Example of throws

class ThrowsDemo

{

 static void throwOne() throws IllegalAccessException

 {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

 }

 public static void main(String args[])

 {

try

{

throwOne();

}

catch (IllegalAccessException e)

{

System.out.println("Caught " + e);

}

}

}

Multithreading

Java provides built-in support for multithreaded programming. Multithreading feature of

Java allows developing multi-threaded program. A multi-threaded program contains two

or more parts that can run concurrently and each part can handle a different task at the

same time making maximum utilization of the available resources specially CPU. Each

part of such program is called a thread. A thread is a lightweight sub-process within a

process; it is the smallest unit of processing.

Threads use a shared memory area. They don't allocate separate memory area so saves

memory, and context-switching between the threads takes less time than process.

Multiprocessing and multithreading, both are used to achieve multitasking.

Multithreading enables user to write very efficient programs that make maximum use of

the CPU, because idle time can be kept to a minimum.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (10) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Threads are represented by the Thread class and the Runnable interface, which are

both part of the java.lang package of classes. Because they belong to this package, users

don‟t have to use an import statement to make them available in your programs.

 [Fig. 3: Process and Thread]

Life Cycle of a Thread

A thread goes through various stages in its life cycle. For example, a thread is born,

started, runs, and then dies. The following diagram shows the complete life cycle of a thread.

[Fig.4 : State transition diagram of a thread]

A thread can be in one of the five states. A thread in Java at any point of time exists in

any one of the following states and it can be move from one state to another by different

methods and ways.

1. Newborn State

2. Runnable State

3. Running State

4. Blocked State

5. Dead State

t1

t2 t3
1

Process 1

Process 2

t1

t2

Process 3

t1

OS

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (11) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

1. Newborn State

When a new thread (thread object) is created, the thread is born and is said to be in

newborn state. The thread has not yet started to run (started to execute). At this state, user

can do only one of the following things with it:

 Schedule it for running using start() method.

 Kill it using stop() method.

If scheduled, it moves to the runnable state. If any other method is attempted at this

stage, an exception is thrown.

2. Runnable State

The runnable stale means that the thread is ready for execution and is waiting for the

availability of the processor. That is, thread has joined the queue of threads that are

wailing for execution. If all threads have equal priority, then they are given time slots for

execution in round robin fashion, i.e., first-come, first-serve manner. The thread that

relinquishes (surrenders) control joins the queue at the end and again waits for its turn.

This process of assigning time to threads is known as time-slicing.

However, if user want a thread to relinquish (surrender) control to another thread to equal

priority before its turn comes, this can be done using the yield() method.

3. Running State

Running means that the processor has given its time to the thread for its execution. The

thread runs until it relinquishes control on its own or it is preempted by a higher priority

thread. A running thread may relinquish its control in one of the following situations.

1) It has been suspended using suspend() method. A suspended thread can be revived

by using the resume() method. This approach is useful when user want to suspend a

thread for some time due to certain reason, bur do not want to kill it.

2) It has been made to sleep. User can put a thread to sleep for a specified time period

using the method sleep(time) where time is in millisecond. This means that the

thread is out of the queue during this time period. The thread re-enters the runnable

state as soon as this time period is elapsed.

3) It has been told to wait until some event occurs. This is done using the wait()

method. The thread can be scheduled to run again using the notify() method.

4. Blocked State

A thread is said to be blocked when it is prevented from entering into the runnable state

and subsequently the running state. This happens when the thread is suspended, sleeping,

or waiting in order to satisfy certain requirement. A blocked thread is considered “not

runnable” but not dead and therefore fully qualified to run again.

5. Dead State

Every thread has a life cycle. A running thread ends its life when it has completed

executing its run() method. It is a natural death. However, user can kill it by sending the

stop message to it at any state thus causing a premature death to it. A thread can be

killed as soon it is born, or while it is running, or even when it is in “not runnable”

(blocked) condition.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (12) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Creating and Running thread

Threads can be created by using two mechanisms:

1. Implementing the Runnable Interface

2. Extending the Thread class

1. Implementing Runnable Interface

If user‟s class is intended to be executed as a thread then this can be achieved by

implementing Runnable interface. To create threads by implementing Runnable

interface needs to follow four basic steps:

Step 1: Create a class that implements the interface Runnable and override run()

method:

class MyThread implements Runnable

{

 ...

 public void run()

 {

 // thread body of execution

 }

}

Inside run(), you will define the code that constitutes the new thread. The run()can

call other methods, use other classes, and declare variables, just like the main thread can.

The only difference is that run()establishes the entry point for another, concurrent

thread of execution within your program. This thread will end when run()returns.

Step 2: Creating Object of a class which implements Runnable:

MyThread myObject = new MyThread();

Step 3: At third step you will instantiate a Thread object using the following constructor:

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements the Runnable interface and

threadName is the name given to the new thread.

Step 4: Once Thread object is created, you can start it by calling start method, which

executes a call to run method. Following is simple syntax of start method:

Threadobj.start();

Example:
class MyThread implements Runnable

{

 public void run()

 {

 System.out.println("this thread is running ...");

 }

}

class ThreadEx1

{

 public static void main(String [] args)

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (13) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 {

 MyThread myobject = new MyThread();

 Thread t = new Thread(myobject);

 t.start();

 }

}

The class MyThread implements standard Runnable interface and overrides the run()

method and includes logic associated with the body of the thread (step 1). The objects

created by instantiating the class MyThread are normal objects (unlike the first

mechanism) (step 2). Therefore, we need to create a generic Thread object and pass

MyThread object as a parameter to this generic object (step 3). As a result of this

association, threaded object is created. In order to execute this threaded object, we need to

invoke its start() method which sets execution of the new thread (step 4).

2. Extending the Thread class

The second way to create a thread is to create a new class that extends Thread class

using the following three simple steps. This approach provides more flexibility in

handling multiple threads created using available methods in Thread class.

Step 1: Create a class by extending the Thread class and override the run() method:

class MyThread extends Thread {

public void run() {

// thread body of execution

}

}

Step 2: Create a thread object:

MyThread thr1 = new MyThread();

Step 3: Start Execution of created thread:

thr1.start();

The class MyThread extends the standard Thread class to gain thread properties through

inheritance. The user needs to implement their logic associated with the thread in the

run() method, which is the body of thread. The objects created by instantiating the class

MyThread are called threaded objects. Even though the execution method of thread is

called run, we do not need to explicitly invoke this method directly. When the start()

method of a threaded object is invoked, it sets the concurrent execution of the object from

that point onward along with the execution of its parent thread/method.

Thread Class versus Runnable Interface

By extending the thread class, the derived class itself is a thread object and it gains full

control over the thread life cycle. Implementing the Runnable interface does not give

developers any control over the thread itself, as it simply defines the unit of work that will

be executed in a thread. Another important point is that when extending the Thread class,

the derived class cannot extend any other base classes because Java only allows single

inheritance. By implementing the Runnable interface, the class can still extend other base

classes if necessary. If the program needs a full control over the thread life cycle,

extending the Thread class is a good choice, and if the program needs more flexibility of

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (14) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

extending other base classes, implementing the Runnable interface would be preferable. If

none of these is present, either of them is fine to use.

Thread Priority

Whenever a thread is created in Java, it always has some priority assigned to it, that

is, it inherits its priority from the thread that created it. Therefore, every thread in Java has a

priority. In a Multithreading environment, thread scheduler assigns processor to a thread

based on priority of thread. Priorities help the thread scheduler to determine the order in

which threads scheduled. The threads with higher priority will usually run before and more

frequently than lower priority threads. By default, all the threads has the same priority, i.e.,

they regarded as being equally distinguished by the scheduler, However, user can explicitly

set a thread's priority at any time after its creation by calling its setPriority() method.

This method accepts an argument of type int that defines the new priority of the thread.

Basically, priorities for a thread are represented by an integer value between 1 and 10,

with 10 being the highest priority, 1 being the lowest and 5 being the default. There are three

static variables defined in Thread class for priority.

1. public static int MIN_PRIORITY: It is the minimum priority of a thread.

The value of it is 1.

2. public static int NORM_PRIORITY: It is the normal priority of a thread.

The value of it is 5.

3. public static int MAX_PRIORITY: It is the maximum priority of a thread.

The value of it is 10.

User can also set the priority of thread in between 1 to 10. This priority is known as

custom priority or user defined priority.

The default priority of a thread is a value „5’. User can also determine the current

thread priority by calling the getPriority() method.

final int getpriority()

This method returns an integer value which indicates the current priority of the thread.

For example: To retrieve the current priority of the thread, use the following code.

System.out.println(“Thread priority =”+t1.getpriority());

user can also set a thread‟s priority by calling the setPriority() method on

a Thread instance.

setPriority(int priority)

For example: To set the thread to the maximum priority, the following statements should be

used.

Thread t1 = new thread();

t1.setPriority(Thread.Max_Priority);

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (15) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 Differences between throw and throws

No. throw throws

1) Java throw keyword is used to

explicitly throw an exception.

Java throws keyword is used to declare

an exception.

2) Checked exception cannot be

propagated using throw only.

Checked exception can be propagated

with throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method

signature.

5) You cannot throw multiple

exceptions.

You can declare multiple exceptions

e.g.

public void method()throws

IOException,SQLException.

 Differences between errors and exceptions

Errors Exceptions

1) Impossible to recover from an error 1) Possible to recover from exceptions

2) Errors are of type „unchecked‟
2) Exceptions can be either „checked‟ or

„unchecked‟

3) Occur at runtime 3) Can occur at compile time or run time

4) Caused by the application running

environment
4) Caused by the application itself

■ ■ ■ ■ ■

Sant Gadge Baba Amravati University, Amravati

B. Sc. Part THREE (Semester – VI) Examination

Questions Asked in Previous University Exams

 Summer-2022 (AY-2272)

2. A) Explain the life cycle of a thread. 6

 B) Explain nested try statement with suitable example. 6

OR

3. A) How to create multiple threads? Explain with example. 6

 B) Explain various types of exception. 6

 Winter 2022 (AC-2131)

2. A) How do we set priorities for threads? Explain. 6

 B) What is multithreading program? Explain how to create the thread. 6

OR

3. A) Explain stopping and blocking a thread with suitable example. 6

 B) Explain throw and throws with suitable example. 6

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-I

 (16) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 Summer 2023 (AD-1909)

2. A) What is exception? State and explain need to handle exception. 6

 B) Write procedure to create your own exception. 6

OR

3. A) Explain predefined exception with suitable example. 6

 B) What is thread? Explain thread class with suitable example. 6

 Winter 2023 (AE-1827)

2. A) Explain state transition diagram of thread. 6

 B) Explain Finally statement with suitable example. 6

OR

3. A) Explain throw and throws with suitable example. 6

 B) What is multithreading program? Explain how to create thread with example. 6

■ ■ ■ ■ ■

