

 Unit-III : Event Handling & AWT

B. Sc. III
Semester-VI
2023-2024

PROF. V. V. AGARKAR
Assistant Professor & Head

Department of Computer Science

Shri. D. M. Burungale Science & Arts College, Shegaon, Dist. Buldana

COMPUTER
 SCIENCE

6S : Advanced Java & VB.net

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (1) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Unit III

Event Handling and AWT: Introduction, Event delegation model, Java AWT

event description, sources of event, Event listener interfaces, Adapter classes, Inner

classes. AWT (Abstract Window Toolkit): Introduction, AWT Controls Label,

Button, Checkboxes, Lists, ScrollBar, TextField, TextArea, Layout manager.

Introduction

Any application in Java uses graphical user interface (GUI), such as Windows based

application or web based application, are event driven. Thus these types of application must

be written with event handling. Most events to which the program will respond are generated

when the user interacts with a GUI-based program. Events are supported in Java by a number

of packages, including java.util, java.awt, and java.awt.event.

Event Handling

The event-driven programming paradigm is the most important aspect of GUI

programming. Event Handling is the mechanism that controls the event and decides what

should happen if an event occurs. This mechanism has the code which is known as event

handler that is executed when an event occurs. The older approach in Java to handle event is

inheritance-based event model (in Java 1.0). Old methods are still supported, but deprecated

and hence not recommended for new programs.

But, the modern approach for event handling in Java is now based on the Delegation

Model. This model defines the standard mechanism to generate and handle the events.

Event Delegation Model

The Delegation Event model is used in Java to handle events. This is the modern

approach for event handling and it defines a standard and compatible mechanism to generate

and process events.

The concept of delegation model is simple: “a source generates an event and sends it

to one or more listeners. The listener simply waits until it receives an event. Once received,

the listener processes the event and then returns”. But, a listener must be registered with a

source in order to receive an event. The main advantage of the Delegation Event Model is

that the application logic (to process events) is completely separated from the interface logic

(that generates events).

Basically, an Event Delegation Model is based on the following three components:

 Events

 Events Sources

 Events Listeners

 Events

The Events are the objects that define state change in a source. An event in Java is an

object that is created when something changes within a graphical user interface. If a user

clicks on a button, clicks on a combo box, or types characters into a text field, moving the

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (2) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

mouse pointer, pressing the keyboard key, selecting an item from the list, etc., then an

event triggers, creating the relevant event object. The events which are generated due to

interaction by the user on components in GUI are called Foreground Events.

Some events may be generated without user’s interaction, called Background Events.

Examples of these events are a timer expires, operating system failures/interrupts,

operation completion, etc.

 Event Sources

An event source is an object that generates an event. It is typically a graphical user

interface (GUI) component, such as a button, a text field, or a menu item, but it can also

be other types of objects that generate events, such as timers or sockets.

When an event is triggered on an event source, the event is encapsulated in an event

object and passed to all the registered event listeners or handlers. The event source is

responsible for notifying the event listeners or handlers of the event and providing them

with the information they need to handle the event.

 Event Listeners

It is also called as event handler. An event listener is an object that is registered to an

event source and is responsible for handling events that are generated by that source.

When an event occurs on the event source, the event listener is notified and performs the

necessary actions to respond to the event.

An event listener in Java is typically implemented as a class that implements a specific

event listener interface, such as ActionListener, MouseListener, or KeyListener. Each

interface specifies a set of methods that the event listener must implement to handle the

corresponding type of event. For example, the ActionListener interface requires the

implementation of a single method called actionPerformed, which is called when an

action event occurs on the event source.

[Fig.1 : Event Delegation Model]

Sources of Events

Following Table-1 lists some of the user interface components that can generate the

events. In addition to these graphical user interface elements, any class derived from

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (3) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Component, such as Frame, can generate events. For example, user can receive key and

mouse events from an instance of Frame.

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates

item events when an item is selected or deselected.

Menu item Generates action events when a menu item is selected; generates

item events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

[Table-1: Event Source Examples]

Event Listener Interfaces

The delegation event model has two parts: sources and listeners. Listeners are created

by implementing one or more of the interfaces defined by the java.awt.event package.

When an event occurs, the event source invokes the appropriate method defined by the

listener and provides an event object as its argument. Table-2 lists several commonly used

listener interfaces and provide a brief description of the methods that they define.

Interface Description

ActionListener Defines one method to receive action events.

AdjustrnentListener Defines one method to receive adjustment events.

ComponentListener
Defines four methods to recognize when a component is

hidden, moved, resized, or shown.

ContainerListener
Defines two methods to recognize when a component is added

to or removed from a container.

FocusListener
Defines two methods to recognize when a component gains or

loses keyboard focus.

ItemListener
Defines one method to recognize when the state of an item

changes.

KeyListener
Defines three methods to recognize when a key is pressed,

released, or typed.

MouseListener

Defines five methods to recognize when the mouse is clicked,

enters a component, exits a component, is pressed, or is

released.

MouseMotionListener
Defines two methods to recognize when the mouse is dragged

or moved.

MouseWheelListener
Defines one method to recognize when the mouse wheel is

moved.

TextListener Defines one method to recognize when a text value changes.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (4) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

WindowFocusListener
Defines two methods to recognize when a window gains or

loses input focus.

WindowListener

Defines seven methods to recognize when a window is

activated, closed, deactivated, deiconified, iconified, opened,

or quit.

[Table-2: Commonly Used Event Listener Interfaces]

Event Classes

The classes that represent events are at the core of Java’s event handling mechanism.

Java defines several types of events. The most widely used events are defined by the AWT

and by Swing.

The package java.awt.event defines many types of events that are generated by

various user interface elements. Table-3 shows several commonly used event classes and

provides a brief description of when they are generated.

Event Class Description

ActionEvent
Generated when a button is pressed, a list item is double-clicked,

or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent
Generated when a component is hidden, moved, resized, or

becomes visible.

ContainerEvent
Generated when a component is added to or removed from a

container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent

Generated when a check box or list item is clicked; also occurs

when a choice selection is made or a checkable menu item is

selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent

Generated when the mouse is dragged, moved, clicked, pressed,

or released; also generated when the mouse enters or exits a

component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent
Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

 [Table-3: Commonly used event classes in java.awt.event]

Commonly used constructors and methods in each of the above class are described in

the following section.

The ActionEvent Class

An ActionEvent is generated when a button is pressed, a list item is double-clicked,

or a menu item is selected. The ActionEvent class defines four integer constants that can be

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (5) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

used to identify any modifiers associated with an action event: ALT_MASK, CTRL_MASK,

META_MASK, and SHIFT_MASK. In addition, there is an integer constant,

ACTION_PERFORMED, which can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates which

modifier keys (alt, ctrl, meta, and/or shift) were pressed when the event was generated.

The when parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command name

equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys

(ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated. Its form is

shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called the

event’s timestamp. The getWhen() method is shown here:

long getWhen()

Using the Delegation Event Model

To use event delegation model, just follow these two steps:

1. Implement the appropriate interface in the listener so that it can receive the type of

event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient for

the event notifications.

Remember that a source may generate several types of events. Each event must be registered

separately. Also, an object may register to receive several types of events, but it must

implement all of the interfaces that are required to receive these events. In all cases, an event

handler must return quickly i.e. an event handler must not retain control for an extended

period of time.

Adapter Classes

Java provides a special feature, called an adapter class, that can simplify the creation

of event handlers in certain situations. An adapter class provides an empty implementation of

all methods in an event listener interface. Adapter classes are useful when you want to

receive and process only some of the events that are handled by a particular event listener

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (6) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

interface. You can define a new class to act as an event listener by extending one of the

adapter classes and implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged()

and mouseMoved(), which are the methods defined by the MouseMotionListener

interface. If you were interested in only mouse drag events, then you could simply extend

MouseMotionAdapter and override mouseDragged(). The empty implementation of

mouseMoved() would handle the mouse motion events for you.

Table-4 lists several commonly used adapter classes in java.awt.event and notes

the interface that each implements.

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener, MouseMotionListener, and

MouseWheelListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener, WindowFocusListener, and

WindowStateListener

[Table-4: Commonly Used Listener Interfaces Implemented by Adapter Classes]

Inner Classes

An inner class in Java is defined as a class that is declared inside another class. Inner

classes are often used to create nested data structures, such as a linked list.

Inner classes can be either static or non-static. A static inner class is one that is

declared with the static keyword. A non-static inner class is one that is not declared with the

static keyword.To access the inner class, create an object of the outer class, and then create an

object of the inner class:

Abstract Window Toolkit (AWT)

 Java AWT (Abstract Window Toolkit) is set of Application Program Interfaces

(APIs) to develop Graphical User Interface (GUI) or window-based applications in java. It is

used to create GUI objects such as buttons, scroll bars, windows etc. Java AWT components

are platform-dependent i.e. components are displayed according to the view of operating

system. AWT is heavyweight i.e. its components are using the resources of OS.

(A more recent set of GUI interfaces called Swing extends the AWT so that the programmer

can create generalized GUI objects that are independent of a specific OS’s windowing system.)

Java AWT Hierarchy

The hierarchy of Java AWT classes are shown in Fig.2 on next page:

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (7) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

[Fig.2 : Java AWT Hierarchy]

Components:

Component class is at the top of AWT hierarchy. AWT provides various components

such as buttons, labels, text fields, checkboxes, etc used for creating GUI elements for

Java Applications.

Container

Container is a component in AWT that contains another component like button, text field,

tables etc. Container is a subclass of component class. AWT provides containers like

panels, frames, and dialogues to organize and group components in the Application.

There are four types of containers in Java AWT: 1) Window 2) Panel 3) Frame and 4)

Dialog.

Window

Window is a top-level container that represents a graphical window or dialog box. The

window is the container that have no borders and menu bars. The Window class extends

the Container class, which means it can contain other components, such as buttons, labels,

and text fields.

Panel

Panel is a container class in Java. It is a lightweight container that can be used for

grouping other components like button, textfield etc. together within a window or a

frame. The Panel does not contain title bar, border or menu bar.

Frame

The Frame is the container that contain title bar and border and can have menu bars. It

can have other components like button, text field, scrollbar etc. Frame is most widely

used container while developing an AWT application.

Dialog

The Dialog class provides a special type of display window that is normally used for pop-

up messages or input from the user.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (8) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Controls

Java AWT controls are the controls that are used to design graphical user interfaces or

web applications. The controls are components that allow a user to interact with the

applications in various ways. To make an effective GUI, Java provides java.awt package

that supports various AWT controls like Label, Button, CheckBox, List, Text Field, Text

Area, etc that creates or draws various components on web and manages the GUI based

application. A layout manager automatically positions components within a container. Thus,

the appearance of a window is determined by a combination of the controls that it contains

and the layout manager used to position them. It is also possible to manually position

components within a window, but which is quite tedious. The AWT supports the following

types of controls:

 Labels Choice lists

 Push buttons Scroll bars

 Check boxes Text Editing

 Lists

All AWT controls are subclasses of Component. Although the set of controls

provided by the AWT is not particularly rich, it is sufficient for simple applications and also

quite useful for the basic concepts and techniques related to handling events in controls.

 Adding and Removing Controls

To include a control in a window, you must add it to the window. To do this, you

must first create an instance of the desired control and then add it to a window by calling

add(), which is defined by Container. The add() method has several forms, the

following is one of its form:

Component add(Component compRef)

Here, compRef is a reference to an instance of the control that you want to add. A reference

to the object is returned. Once a control has been added, it will automatically be visible

whenever its parent window is displayed.

Sometimes you will want to remove a control from a window when the control is no

longer needed. To do this, call remove(). This method is also defined by Container. Here is

one of its forms:

void remove(Component compRef)

Here, compRef is a reference to the control you want to remove. You can remove all controls

by calling removeAll().

Labels

A Label is a GUI control which can be used to display static uneditable text. The

Label contains a string and is an object of type Label. Labels are generally limited to single-

line messages. Labels are usually used to identify components. Labels are passive controls

that do not support any interaction with the user and do not fire any events. Label can be

created using the Label class.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (9) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Label Constructors:

Label defines the following constructors:

Label() throws HeadlessException

Label(String str) throws HeadlessException

Label(String str, int how) throws HeadlessException

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that

contains the string specified by str using the alignment specified by how. The value of

how must be one of these three constants: Label.LEFT, Label.RIGHT, or

Label.CENTER.

Label Methods:

1) setText() method

This method is used to set or change the text in a label. The syntax of the method is:

void setText(String str)

Where, str specifies the new label to set.

2) getText() method

This method is used to obtain the current label. The syntax of the method is:

String getText()

The current label is returned.

3) setAlignment() method

This method sets the alignment for the label to the specified alignment. The syntax of

the method is:

void setAlignment(int how)

Here, how must be one of the alignment constants.

4) getAlignment() method

This method is used to get the current alignment of the label. The syntax of the

method is:

int getAlignment()

Returns the current alignment of the label i.e. LEFT, RIGHT or CENTER.

Buttons

Button is a control component has a text on the face of the button is called button

label and when the user presses this button, it produces an event. It is a regular push button

and whenever a push button is clicked, it generates an event and executes the code of

the specified listener.

If an application wants to perform some action based on a button being pressed and

released, it should implement ActionListener and register the new listener to receive

events from this button, by calling the button's addActionListener method.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (10) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

When a button is pressed and released, AWT will send an instance of ActionEvent

to the button, by calling processEvent on the button. Button’s processEvent method

receives all events for the button and passes an action event along by calling its own

processActionEvent method. Latter method passes the action event on to any action

listeners have interest in action events generated by this button.

 Button Constructors:

Button defines the following two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains str as

a label.

 Button Methods:

After a button has been created, you can set its label by calling setLabel(). You can

retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

 Handling Buttons:

Each time a button is pressed, an action event is generated. This is sent to any listeners

that previously registered an interest in receiving action event notifications from that

component. Each listener implements the ActionListener interface. That interface

defines the actionPerformed() method, which is called when an event occurs. An

ActionEvent object is supplied as the argument to this method. It contains both a

reference to the button that generated the event and a reference to the action command

string associated with the button. By default, the action command string is the label of the

button. Either the button reference or the action command string can be used to identify

the button.

Checkboxes

A check box is a control that is used to turn an option on or off. It consists of a small

box that can either contain a check mark or not. It is usually used to display a set of

options which can be selected independently by the user, or allow multiple selections.There is

a label associated with each check box that describes what option the box represents. You

change the state of a check box by clicking on it. Check boxes can be used individually or as

part of a group. Check boxes are objects of the Checkbox class. Checkbox supports these

constructors:

Constructor Description

Checkbox() Creates a checkbox with no label i.e. blank label,

this checkbox is unchecked by default.

Checkbox(String str) Creates a checkbox whose label is specified by str,

this checkbox is unchecked by default.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (11) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Checkbox(String str, boolean on) Creates a checkbox whose label is specified by str,

this checkbox is checked or unchecked depending

on the boolean value.

Checkbox(String str, boolean on,
CheckboxGroup cbGroup)

The fourth and fifth forms create a check box

whose label is specified by str and whose group is

specified by cbGroup. If this check box is not part

of a group, then cbGroup must be null. The value

of on determines the initial state of the check box.
Checkbox(String str, CheckboxGroup
cbGroup, boolean on)

Check Box methods

Methods Description

void setLabel(String str) Sets a String str as Checkbox’s label.

String getLabel() Gets the label of the Checkbox.

void setState(boolean b) Sets a state of check box to the specified state.

boolean getState() Gets the state of Checkbox whether it is in on or off state.

Handling Check Boxes

Each time a check box is selected or deselected, an item event is generated. This is

sent to any listeners that previously registered an interest in receiving item event notifications

from that component. Each listener implements the ItemListener interface. That interface

defines the itemStateChanged() method. An ItemEvent object is supplied as the

argument to this method. It contains information about the event (for example, whether it was

a selection or deselection).

CheckboxGroup

It is possible to create a set of mutually exclusive check boxes in which one and only

one check box in the group can be checked at any one time. These check boxes are often

called radio buttons. To create a set of mutually exclusive check boxes, you must first define

the group to which they will belong and then specify that group when you construct the check

boxes. Check box groups are objects of type CheckboxGroup. Only the default constructor

is defined, which creates an empty group.

Which check box in a group is currently selected is determined by calling

getSelectedCheckbox(). You can set a check box by calling

setSelectedCheckbox(). These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check

box will be turned off.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (12) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Lists

The java.awt.List component, known as a list or listbox, is similar to the Choice

component, except it shows multiple items at a time and user is allowed to select either one or

multiple items at a time. When the numbers of items in the list exceed the available space, the

scrollbar will be displayed automatically. A list can be created by instantiating a List class.

The List is a GUI component used to display a list of text items. It contains a set of

String values that the user can choose from. It is a 'list' that allows the user to select one or

more options. The programmer has the choice to configure 'single select' or 'multiple select'

option of a list. An object of List class generates an ItemEvent object when an item is

selected from the list. This event can be handled by implementing the ItemListener interface.

Any class implementing this interface can interact with the List object at runtime and handle

selecting and unselecting of items from a list. List provides following constructors:

Constructor Description

List() Creates a new scrolling list and allows only one item to

be selected at any one time.

List(int numRows) Creates a new scrolling list and the value of numRows

specifies the number of entries (lines) in the list that will

always be visible (others can be scrolled into view as

needed).

List(int numRows,

boolean multipleSelect)

If multipleSelect is true, then the user may select two or

more items at a time. If it is false, then only one item

may be selected.

List provides following methods:

Methods Description

Add(String name) Adds the specified item name to the end of scrolling list.

Add(String name, int

Index)
Adds the specified item to the scrolling list at the

position indicated by the index. Indexing begins at zero.

You can specify –1 to add the item to the end of the list.

String

getSelectedItem()
For lists that allow only single selection, you can

determine which item is currently selected by calling

getSelectedItem(). This method returns a string

containing the name of the item.

 If more than one item is selected, or if no selection

has yet been made, null is returned.

int getSelectedIndex() For lists that allow only single selection, you can

determine which item is currently selected by calling

getSelectedIndex(). This returns index of the item.

The first item is at index 0. If more than one item is

selected, or if no selection has made, –1 is returned.

String[]

getSelectedItems()
For lists that allow multiple selection, you can use

getSelectedItems(). This returns an array

containing the names of the currently selected items.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (13) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

int[]

getSelectedIndexes()
For lists that allow multiple selection, you can use

getSelectedIndexes(). The returns an array

containing the indexes of the currently selected items.

int getItemCount() To obtain the number of items in the list.

void select(int index) To set the currently selected item by using the

select() method.

getItem(int index) By giving an index, you can obtain the name associated

with the item at that index.

Handling Lists

To process list events, you will need to implement the ActionListener interface.

Each time a List item is double-clicked, an ActionEvent object is generated. Its

getActionCommand() method can be used to retrieve the name of the newly selected item.

Also, each time an item is selected or deselected with a single click, an ItemEvent object is

generated. Its getStateChange() method can be used to determine whether a selection or

deselection triggered this event. getItemSelectable() returns a reference to the object

that triggered this event.

ScrollBar

Scrollbar class is used to create a horizontal and vertical Scrollbar. A Scrollbar can be

added to a top-level container like Frame or a component like Panel. The Scroll bars are used

to select continuous values between a specified minimum and maximum. Scroll bars may be

oriented horizontally or vertically. A scrollbar consists of several individual parts: arrows (the

buttons at each end of the scrollbar), a slider box or thumb (scrollable box you slide) and a

track (part of the scrollbar you slide the thumb in). The current value of the scroll bar relative

to its minimum and maximum values is indicated by the slider box (or thumb) for the scroll

bar. The slider box can be dragged by the user to a new position. The scroll bar will then

reflect this value. In the background space on either side of the thumb, the user can click to

cause the thumb to jump in that direction by some increment larger than 1. Typically, this

action translates into some form of page up and page down. Scroll bars are encapsulated by

the Scrollbar class.

Scrollbar provides following constructors:

Constructor Description

Scrollbar() Constructs a new vertical scroll bar.

Scrollbar(int style) Constructs a new scroll bar with the specified orientation

by style. If style is Scrollbar.VERTICAL, a vertical

scroll bar is created. If style is Scrollbar.HORIZONTAL,

the scroll bar is horizontal.

Scrollbar(int style,

int initialValue,

int thumbSize, int

min, int max)

Initial value of the scroll bar is passed in initialValue. The

number of units represented by the height of the thumb is

passed in thumbSize. The minimum and maximum values

for the scroll bar are specified by min and max.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (14) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Scrollbar provides following methods:

Methods Description

void setValues(int value, int

visible, int minimum, int

maximum)

Sets the values of four properties for this

scroll bar: value, visibleAmount, minimum,

and maximum.

void setValue(int newValue) Sets the value of this scroll bar to the

specified value.

int getValue() Gets the current value of this scroll bar.

int getMaximum() Gets the maximum value of this scroll bar.

int getMinimum() Gets the minimum value of this scroll bar.

int getOrientation() Returns the orientation of this scroll bar.

void setOrientation(int

orientation)
Sets the orientation for this scroll bar.

Handling Scroll Bars

To process scroll bar events, you need to implement the AdjustmentListener

interface. Each time a user interacts with a scroll bar, an AdjustmentEvent object is

generated. Its getAdjustmentType() method can be used to determine type of adjustment.

TextField

A TextField is a component used for displaying, inputting and editing a single line

of plain text. The TextField can be created by creating an instance of TextField class. It

is usually called an edit control. Text fields allow the user to edit the text using the arrow

keys, cut and paste keys, and mouse selections.

Whenever a key is pressed in a TextField, the AWT creates events. It could be either

a key pressed event, a key released event, or a key typed event. A KeyEvent is passed to the

registered KeyListener. A TextField can also generate an ActionEvent whenever

the 'enter' key is pressed. Any class interested in this event needs to implement

the ActionListener interface.

TextField defines the following constructors:

Constructor Description

TextField() Constructs a new text field.

TextField(int numChars) Creates a TextField with a specified width.

TextField(String str) Creates a TextField with a specified default text.

TextField(String str,

int numChars)

Constructs a new text field initialized with the specified

text to be displayed, and wide enough to hold the

specified number of characters.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (15) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

TextField defines the following methods:

Methods Description

void setText(String str) Sets a String str on the TextField.

String getText() Gets the string currently contained in the TextField.

void setEditable(boolean b) Sets a Sets a TextField to editable or uneditable.

void setFont(Font f) Sets a font type to the TextField

setForeground(Color c) Sets a foreground color, color of text in TextField.

setEchoChar() Set echo character for the text field.

TextArea

The TextArea control in AWT provides us multiline editor area. The user can type here as

much as he wants. Initially the scroll bar is invisible, when the text in the TextArea

becomes larger than the viewable area the scroll bar is automatically appears which help

us to scroll the text up & down and right & left.

TextArea defines the following constructors:

Constructor Description

TextArea() Constructs a new text area with the empty string as text.

TextArea(int numLines,

int numChars)
Constructs a new text area with the specified height

(number of lines) and width (number of characters) and

the empty string as text.

TextArea(String str,

int numLines, int

numChars)

Constructs a new text area with the specified text, and

with the specified number of lines and width.

TextArea(String str,

int numLines, int

numChars, int sBars)

Constructs a new text area with the specified text, and

with the lines, width, and scroll bar visibility as

specified. SCROLLBARS_BOTH, SCROLLBARS_NONE,

SCROLLBARS_HORIZONTAL_ONLY,
SCROLLBARS_VERTICAL_ONLY

TextArea defines the following methods:

Methods Description

void setText(String text) Sets a String message on the TextArea.

String getText() Gets a String message of TextArea.

void append(String text) Appends the text to the TextArea.

setRows(int n) Specifies the number of lines of text.

int getRows() Gets the total number of lines in TextArea.

setColumns() Specifies the number of columns of text.

int getColumns() Gets the total number of columns in TextArea.

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (16) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Layout Manager

Layout Managers are used to arrange different components (Button, Label, TextField

etc) within different types of windows (Panel, Applet, Frame etc.). They control the size and

position of components within container. The layout manager automatically positions all the

components within the container. If we do not use layout manager then also the components

are positioned by the default layout manager. It is possible to layout the controls manually but

it is very tedious.

Java provides various layout manager to position the controls. The properties like

size, shape and arrangement varies from one layout manager to other layout manager. When

the size of the applet or the application window changes the size, shape and arrangement of

the components also changes in response i.e. the layout managers adapt to the dimensions of

appletviewer or the application window.

Layout Manager is an interface that is implemented by all the classes of layout

managers. There are following classes that represent the layout managers:

Layout Manager Description

BorderLayout The borderlayout arranges the components to fit in the five

regions: east, west, north, south and center.

CardLayout The CardLayout object treats each component in the

container as a card. Only one card is visible at a time.

FlowLayout The FlowLayout is the default layout.It layouts the

components in a directional flow.

GridLayout The GridLayout manages the components in form of a

rectangular grid.

GridBagLayout This is the most flexible layout manager class.The object of

GridBagLayout aligns the component vertically,horizontally

or along their baseline without requiring the components of

same size.

■ ■ ■ ■ ■

B. Sc. III (Semester-VI) Paper 6S : Advanced Java & VB.net

COMPUTER SCIENCE (2023-24) Unit-III

 (17) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Sant Gadge Baba Amravati University, Amravati

B. Sc. Part THREE (Semester – VI) Examination

Questions Asked in Previous University Exams

 Summer-2022 (AY-2272)

6. A) List the different AWT controls and explain how to add and remove controls. 6

 B) Explain Event Delegation model in detail. 6

OR

7. A) List the Event Listener Interfaces with description. 6

 B) Explain Checkboxes and Label AWT control with example. 6

 Winter 2022 (AC-2131)

6. A) List the different types of controls supported by AWT. Explain. 6

 B) Explain Adapter Classes with suitable example. 6

OR

7. A) What is event? Explain sources of events with example. 6

 B) Explain List and Labels AWT controls with example. 6

 Summer 2023 (AD-1909)

6. A) Explain Java AWT Checkboxes with example. 6

 B) Explain Event Listener Interface. 6

OR

7. A) Explain Delegation model. 6

 B) Explain Java AWT Hierarchy. 6

 Winter 2023 (AE-1827)

6. A) Explain event delegation model in detail. 6

 B) Explain the following AWT controls :

 (i) Button

 (ii) List 6

OR

7. A) Explain Adapter Classes with example. 6

 B) List the different AWT controls and explain the steps of adding and

removing controls. 6

■ ■ ■ ■ ■

