
B.Sc-III (Sem-VI) Unit-4

Adding Controls to form

• To add control to a form, select the control in the Toolbox. Then,

click in the form where you want to place the control and drag the

pointer on the form to size the control.

• A second method for adding the controls is to simply double-click

the control you want to add in the toolbox. This places the control in

upper left corner of the form. You can then move and resize the

control.

• A third way to add control to form is to drag the control from the

toolbox to form. The control is placed wherever you drop it. You can

then resize the control.

• After you have added controls to the form, you can work with

several controls at once. For example, let’s say that you have two

labels and two textbox controls on your form and you want to make

them all the same size with the same alignment. To do that, first

select all four controls by holding down shift key as you click on

them or by using mouse pointer to drag around all controls.

• To change the size of a form to accommodate the controls, click on

the form and then drag it by one of its handles.

• To set the properties of a form or control, you work with properties

window as shown in below fig 1.1. To display the properties for a

specific control, click on it in the Form Designer window to select

the control.

Unit IV : Windows Applications: Forms: Adding Controls to Forms, Handling

Events, MsgBox, InputBox , Working with Multiple Forms, Setting the Startup Form,

SDI & MDI Forms, Handling Mouse & Keyboard Events, Common controls: Text

Boxes, Rich Text Boxes, Labels, Buttons, Checkboxes, Radio Buttons, Group Boxes,

List Boxes, Checked List Boxes, Combo Boxes, Picture Boxes, Scroll Bars, Tool

Tips, Timers, properties – methods.

B.Sc-III (Sem-VI) Unit-4

[Fig 1.1: A form after Some controls have been added to it]

Event Handling in VB.Net

VB.Net is an event driven programming Language. An event is an action which

occurs when clicking on a button, typing some texts or moving the mouse and that

calls a function or causing for another event.

The events in a VB.Net program are of two types: user generated events and system

generated events. The user-generated events occur when the user actions key press,

clicks, mouse movements, etc. are happening. System generated events are

notifications in the computer.

VB.Net mainly provide the following two events.

• Mouse Events

• Keyboard Events

VB.Net Mouse Events

Control that

selected in

the toolbox

Control that

Being added

to the form

Sizing

Handle

Properties

that being

set

B.Sc-III (Sem-VI) Unit-4

Private Sub Button1_MouseDown(ByVal sender As Object, ByVal e

As System.Windows.Forms.MouseEventArgs) Handles

Button1.MouseDown

 TextBox1.ForeColor = Color.Brown

 End Sub

Private Sub Button1_MouseEnter(ByVal sender As Object, ByVal e

As System.EventArgs) Handles Button1.MouseEnter

 TextBox2.ForeColor = Color.Blue

 End Sub

Private Sub Button1_MouseHover(ByVal sender As Object, ByVal e

As System.EventArgs) Handles Button1.MouseHover

 TextBox3.ForeColor = Color.CornflowerBlue

 End Sub

Private Sub Button1_MouseLeave(ByVal sender As Object, ByVal e

As System.EventArgs) Handles Button1.MouseLeave

 TextBox4.ForeColor = Color.DarkGray

 End Sub

Private Sub Button1_MouseMove(ByVal sender As Object, ByVal e

As System.Windows.Forms.MouseEventArgs) Handles

Button1.MouseMove

 TextBox5.ForeColor = Color.DarkRed

 End Sub

Private Sub Button1_MouseUp(ByVal sender As Object, ByVal e As

System.Windows.Forms.MouseEventArgs) Handles Button1.MouseUp

 TextBox6.ForeColor = Color.IndianRed

 End Sub

Mouse events occur by the actions of the mouse in a Windows form, such as mouse

move and mouse click. Mouse event present in the class

System.Windows.Forms.MouseEventArgs.

 The following are the mouse events in VB.Net.

• MouseDown – occurs when a mouse button is pressed.

• MouseEnter – occurs when the mouse pointer enters the control.

• MouseHover – occurs when the mouse pointer hovers over the control.

• MouseLeave – occurs when the mouse pointer leaves the control.

• MouseMove – occurs when the mouse pointer moves over the control.

• MouseUp – occurs when the mouse pointer is over the control and the mouse

button is released.

B.Sc-III (Sem-VI) Unit-4

Private Sub Button1_MouseWheel(ByVal sender As Object, ByVal e

As System.Windows.Forms.MouseEventArgs) Handles

Button1.MouseWheel

 TextBox7.ForeColor =Color.OrangeRed

 End Sub

• MouseWheel – occurs when the mouse wheel moves and the control has the

focus.

[Fig : Mouse Events Output]

VB.Net Keyboard Events

Keyboard events allow you to validate keystrokes. Keyboard event present in the

class System.Windows.Forms.KeyEventArgs. They are raised by the control that

has the focus and is receiving input.

Following are the key events:

• KeyDown

• KeyUp

• KeyPress

KeyDown:

It occurs when a key is pressed down on the keyboard, it repeats while the user

holds the key depressed and the control has focus.

B.Sc-III (Sem-VI) Unit-4

Example:

KeyUp:

It occurs when a key is released on the keyboard, and the control has focus.

Example:

The KeyDown and KeyUp events get an argument using KeyEventArgs. It has the

following properties:

1. Handled : It indicates if the KeyPress event is handled.

2. KeyChar : It stores the character corresponding to the pressed.

KeyPress:

It is raised for character keys while the key is pressed and then released by the user. The

KeyPress event is not raised by noncharacter keys. It occurs when a key is released

while the control has focus.

Example:

MessageBox() Function

MessageBox() Function display dialog box which is use to show a pop up message box and

prompt the user to click on command button before he/she continues. It interrupts the user

that means it immediately block further interaction.

Private Sub TextBox1_KeyDown(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyDown

 TextBox1.ForeColor=Color.LightPink

End Sub

Private Sub TextBox1_KeyUp(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyUp

 TextBox1.ForeColor=Color.Aqua

End Sub

Private Sub TextBox1_KeyPress(ByVal sender As Object, ByVal e As

System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyPress

 TextBox1.ForeColor=Color.Aqua

End Sub

B.Sc-III (Sem-VI) Unit-4

Syntax:

prompt - Required. String expression containing the message to be displayed. The maximum

length of a single line prompt is approximately 1024 characters, depending on the width of the

characters used.

Style value – Denote the style and type of button to display in messagebox. As in shown below

 Fig.

Constant Value Description

vbOKOnly

- or -

MsgBoxStyle.OKOnly

0 Display OK button only.

vbOKCancel

- or -
1 Display OK and Cancel buttons.

Msg = MessageBox.Show(prompt, style value, Title)

Title

Prompt

Style Value

B.Sc-III (Sem-VI) Unit-4

Determines which icon to display:

Constant Value Description Icon

vbCritical
- or -
MsgBoxStyle.Critical

16
Display Critical
Message icon.

vbQuestion

- or -
MsgBoxStyle.Question

32
Display Warning
Query (question mark) icon.

vbExclamation

- or -
MsgBoxStyle.Exclamation

48
Display Warning
Message icon.

vbInformation

- or -
MsgBoxStyle.Information

64
Display Information
Message icon.

If you wanted to display OKCancel button along with the information icon, you could

have coded the second argument as

 MsgBoxStyle.Information + MsgBoxStyle.OkCancel

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim msg As String

 msg = MsgBox("Ruchika", MsgBoxStyle.Information +

MsgBoxStyle.OkCancel, "Rathi")

 End Sub

End Class

MsgBoxStyle.OKCancel

vbAbortRetryIgnore

- or -

MsgBoxStyle.AbortRetryIgnore

2
Display Abort, Retry,

and Ignore buttons.

vbYesNoCancel

- or -

MsgBoxStyle.YesNoCancel

3 Display Yes, No, and Cancel buttons.

vbYesNo

- or -

MsgBoxStyle.YesNo

4 Display Yes and No buttons.

vbRetryCancel

- or -

MsgBoxStyle.RetryCancel

5 Display Retry and Cancel buttons.

B.Sc-III (Sem-VI) Unit-4

Title: The title argument will display the title of the message board.

InputBox Function

This InputBox function will display a built in dialog box that can be used to prompt

the user for information. This type of message box displays a message and waits for

the user to respond by pressing a button. This function always returns a String so

you often have to convert the value to its correct data type. Even if a numerical value

is entered it will be returned as a string.

[Fig: InputBox Function demonstration]

Syntax

InputBox(Prompt, Title, default_text, x-position, y-position)

prompt: Required. String expression containing the message to be displayed. The

maximum length of a single line prompt is approximately 1024 characters, depending

on the width of the characters used.

title: Optional. String expression displayed in the title bar of the dialog box. If you

omit title, the application name is placed in the title bar.

default: Optional. String expression displayed in the text box as the default response

if no other input is provided. If you omit default, the text box is displayed empty.

xpos: Optional. Numeric expression that specifies, the horizontal distance of the left

edge of the dialog box from the left edge of the screen. If xpos is omitted, the dialog

box is horizontally centered.

B.Sc-III (Sem-VI) Unit-4

ypos: Optional. Numeric expression that specifies, the vertical distance of the upper

edge of the dialog box from the top of the screen. If ypos is omitted, the dialog box

is vertically positioned approximately one-third of the way down the screen.

Example:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Button1.Click

 Dim msg As String

 msg = InputBox("Please enter name:", "Ruchika Rathi",

"Ruchika", 300, 150)

 TextBox1.Text = msg

 End Sub

End Class

The output of the given code will be as shown in above fig[InputBox

Function Demonstration].

How to develop a multiple-document interface(MDI)?

The process of creating MDI Application are as follows:

1. To make a form as a parent we have to set property IsMdiContainer

as True inside property window as shown in below fig 1.

[Fig 1]

2. After that to add more form inside an MDI Forms: Go to Solution

Explorer and then right click on Name of Project(MDI demo in my

B.Sc-III (Sem-VI) Unit-4

case) as shown in fig 2 below from pop up shown we have to select

Add inside that we have to select windows form. Then after clicking

on Windows form, it will show pop up window form providing name

of that form by default the text will be Form2. Then after providing

any name to form or to set as it is default name as shown in below

fig 3. then click on add then it will add Form2 inside solution explore

as shown in fig 4. Now we assuming Form2 as child.

 [Fig 2] [Fig 4]

 [Fig 3]

B.Sc-III (Sem-VI) Unit-4

3. Now, to create Menu, add a MenuStrip control to form1(Parent). The

control will appear in the Component Designer tray at bottom of the

Designer window, and the Menu property of the form will set name

of that control as shown in fig 5 below. To add menu items, click on

wherever it says “Type Here” in menu designer and select

MenuItems from combobox options as shown in fig 6 below. It will

add MenuItem1 as shown in fig 7 below. When the user double click

on ToolStripMenuItem1 it will open an code window for you for

click even occurs after clicking on the particular MenuItems.

Fig 5

 Fig 6 Fig 7

4. When the user double clicks on ToolStripMenuItem1 it will open a

code window for you for click event occurs after clicking on the

particular MenuItems as shown in fig 8.

Menu

Designer

Component

Designer Tray

B.Sc-III (Sem-VI) Unit-4

 Fig 8

5. Now, to display child form(Form2) inside the parent form(Form1).

You have to write some lines of code as shown below inside code

window shown in fig 8.

Dim frm2 As New Form2

Me.IsMdiContainer=True

 frm2.MdiParent=Me

frm2.show()

In above code firstly we create an instance(object) of a child form,

you must set its MdiParent property to the name of its parent form.

Since a child form is usually displayed by its parent form, you can

use the Me keyword to identify the parent form. The output of MDI

Form2 inside Form1 will be look as shown in Fig 9

B.Sc-III (Sem-VI) Unit-4

 Fig 9

SDI(Single Document Interface) Form

 An SDI opens each document in its own primary window. Each window

has its own menu, toolbar, and entry in the task bar. Therefore, an SDI is

not permitted to a parent window. This makes it easier for the user to view

the contents of the various windows. Notepad is an example of an SDI

application.

B.Sc-III (Sem-VI) Unit-4

Fig: SDI Form

 Multiple Document Interface (MDI):

An MDI lets you open more than one document at the same time. The MDI

has a parent window, and any number of child windows. The child

windows usually share various parts of the parent window’s interface,

including the menu bar, toolbar and status bar. Therefore, an MDI is

permitted to the parent window. Microsoft Visual Studio is an MDI

application.

Fig : MDI Form

Difference Between SDI and MDI

a) MDI stands for “Multiple Document Interface” while SDI stands for “Single

Document Interface”.

b) One document per window is enforced in SDI while child windows per document

are allowed in MDI.

B.Sc-III (Sem-VI) Unit-4

c) MDI is a container control while SDI is not container control.

d) SDI contains one window only at a time but MDI contains multiple documents at a

time appeared as child window.

e) MDI supports many interfaces means we can handle many applications at a time

according to user’s requirement. But SDI supports one interface means you can handle

only one application at a time.

f) For switching between documents MDI uses special interface inside the parent

window while SDI uses Task Manager for that.

g) In MDI grouping is implemented naturally but in SDI grouping is possible through

special window managers.

h) For maximizing all documents, parent window is maximized by MDI but in case of

SDI, it is implemented through special code or window manager.

i) Switch focus to the specific document can be easily handled while in MDI but it is

difficult to implement in SDI.

Common Controls, Properties and Methods:

ToolBox Control in VB.Net, will act as an object use for interaction with user in

the Visual Studio form to create an Windows Application. Every Visual basic

control consists of three important elements:

1. Properties which describes the objects,

2. Methods helps objects to do task after an action perform.

3. Events informs an application what happen with object if some action

perform.

Control Properties:

All Visual basic objects such as button, textbox, label etc can be moved, resized,

or customized by setting their properties. A properties is a value or characteristic

held by Visual basic object, such as Caption, ForeColor, BackColor etc.

Properties can be set at design time by using the Properties window or at run

time by using statements in program code.

 Object.Property = Value

For ex:

Textbox1.Text = “Hello”

Control Methods:

Method is specific task created as a member of class and helps objects do

something. Methods are used to access or manipulate the characteristics of an

object or variable.

B.Sc-III (Sem-VI) Unit-4

Windows forms is in the System.Windows.Forms namespace, and the form

class is System.Windows.Forms.Form. The Form class itself is based on the

Control class, which means that forms share a lot of the properties and methods

that controls do.

TextBox

Textbox are exactly what their name implies: box-like controls in which you can enter

text. Windows forms text boxes are used to get input from the user or to display text.

The TextBox control is generally used for editable text, although it can also be made

read only. Text boxes can display multiple lines, wrap text to the size of the control,

and add basic formatting, such as quotation marks and masking characters for

passwords.

The text displayed by the control is contained in the Text property. By default, you can

enter up to 2,048 characters in a text box. If you set the MultiLine property to True to

make the control, accept multiple lines of text, you can enter up to 32KB of text. The

Text property can be set at design time with the Properties window, at run time in code,

or by user input at run time.

You can set or read text from text boxes at run time, and the user can enter and edit text

in text boxes as well. You can limit the amount of text entered into a TextBox control

by setting the MaxLength property to a specific number of characters. TextBox

controls also can be used to accept passwords if you use the PasswordChar property

to mask characters.

Properties of TextBox

Property Means

MaxLength Sets/gets the maximum number of characters the user can type into

the text box.

Multiline Sets/gets a value specifying if this is a multiline text box control.

PasswordChar Sets/gets the character used to mask characters of a password in a

single-line text box.

ScrollBars Sets/gets what scroll bars should appear in a multiline text box.

Text Sets/gets the current text in the text box.

TextAlign Sets/gets how text is aligned in a text box control.

B.Sc-III (Sem-VI) Unit-4

WordWrap Indicates if a multiline text box control automatically wraps words.

Methods of TextBox

Methods Means

AppendText Appends text to the current text in the text box.

Clear Clears all text from the text box.

Copy Copies the selected text in the text box to the Clipboard.

Cut Moves the selected text in the text box to the Clipboard.

Paste Replaces the selected text in the text box with the contents of the

Clipboard.

Q How to access Text in TextBox? Explain the steps of adding scrollbars and

aligning text in textboxes.

Access Text in TextBox:

you set the text in a text box using the Text property, like this:

Private Sub Button1_Click_1(ByVal sender As System.Object, _ ByVal e As

System.EventArgs) Handles Button1.Click

TextBox1.Text = "Hello from Visual Basic"

 End Sub

When the user clicks the command button Button1, the text "Hello from Visual Basic"
appears in the text box. And you can retrieve/get text from a text box in the same way:

 Private Sub Button1_Click_1(ByVal sender As System.Object, _ ByVal e As

System.EventArgs) Handles Button1.Click

Dim strText As String

B.Sc-III (Sem-VI) Unit-4

strText = TextBox1.Text

 End Sub

Steps of adding scrollbars :

If you're using multiline text boxes, it would be even better if you could add scroll bars

to let the user enter even more text. If your program's users are going to be entering a

lot of text into text boxes, you can avoid the need for huge text boxes by adding scroll

bars.

Using the ScrollBars property, there are four ways to add scroll bars to a text box; here

are the settings you use for ScrollBars, and the type of scroll bars each setting displays:

0: None

1: Horizontal

 2: Vertical

3: Both

 Note that in order for the scroll bars to actually appear, the text box's MultiLine

property must be True. After you install scroll bars in a text box, the result appears as

in Figure below. Now the user can enter much more text simply by scrolling

appropriately.

Fig: scroll bars in a text box

Aligning Text in textboxes:

Text boxes have an TextAlign property, for alignment of text (there are three

possibilities: 0: left-justified, 1: right-justified, and 2: centered) at design time

in all the text boxes. You needed to set a text box's MultiLine property to True

before text alignment. Fig below shows a textbox with right-justified.

B.Sc-III (Sem-VI) Unit-4

Fig : textbox with right-justified text

Q. Differentiate between Textbox and RichTextbox Control.

Q. Explain Rich TextBox Control with any three properties and any three

methods.

The RichTextBox is similar to the TextBox, but it has additional formatting capabilities.

Whereas the TextBox control allows the Font property to be set for the entire control,

the RichTextBox allows you to set the Font, as well as other formatting properties, for

selections within the text displayed in the control.

When considering the difference between the TextBox and RichTextBox controls,

compare Notepad and WordPad, the two text editors that are included with Windows.

Notepad, based on the TextBox control, has no formatting applicable to selections

within the text. WordPad, on the other hand, is practically a full-fledged word processor,

with such features as bullets, hanging indents, fonts, and character styles applicable to

selections within the text.

The default file format for the RichTextBox is the Rich Text Format (RTF), a file format

that can carry formatting information.

The RichTextBox control inherits all the properties, methods, and events from the

TextBoxBase class, so it behaves much like the TextBox control. In addition, it has

many properties, methods, and events specific to itself.

Properties of Rich TextBox

Properties Means

AutoSize Sets/gets a value specifying if the size of the rich text box

automatically adjusts when the font changes.

AutoWordSelection Sets/gets a value specifying if automatic word selection is

enabled.

BulletIndent Sets/gets the indentation used in the rich text box when the

bullet style is applied to the text.

SelectedText

Sets/gets the selected text within the rich text box.

SelectionAlignment Sets/gets the alignment to apply to the current selection or

insertion point.

SelectionBullet Sets/gets a value specifying if the bullet style is applied to

the current selection or insertion point.

B.Sc-III (Sem-VI) Unit-4

SelectionColor Sets/gets the text color of the current text selection or

insertion point.

SelectionFont

Sets/gets the font of the current text selection or insertion

point.

SelectionHangingIndent Sets/gets the distance between the left edge of the first line

of text in the selected paragraph and the left edge of the

next lines in the same paragraph.

SelectionIndent Sets/gets the distance in pixels between the left edge of the

rich text box and the left edge of the current text selection

or text added after the insertion point.

SelectionStart

Sets/gets the starting point of text selected in the text box.

Method of Rich Textbox

Methods Means

AppendText
Appends text to the current text of the rich text box.

Example

RichTextBox1.AppendText("Type additional text here")

Clear
Clears all text from the RichTextBox control.

Example

RichTextBox1.Clear()

Find

Searches for a specified text within the RichTextBox.

Example

Dim index As Integer = RichTextBox1.Find("searchText")

LoadFile

Loads the contents of the RichTextBox to a file.

Example

RichTextBox1.LoadFile("C:\Path\to\File.rtf")

SaveFile
saves the contents of the RichTextBox to a file.

Example

RichTextBox1.SaveFile("C:\Path\to\NewFile.rtf")

Labels

 You use labels for just what they sound like—to label other parts of your application.

Labels usually are used to display text that cannot be edited by the user. Your code can

change the text displayed by a label.

B.Sc-III (Sem-VI) Unit-4

The caption for a label is stored in the Text property. Because you can change that

caption in code, labels can act a little like non-editable text boxes, displaying text and

messages to the user. The TextAlign (formerly Alignment) property allows you to set

the alignment of the text within the label.

Properties Means

AutoSize Sets/gets a value specifying if the control should be automatically

resized to display all its contents.

BorderStyle Sets/gets the border style for the control.

FlatStyle Sets/gets the flat style appearance of the label control.

Image Sets/gets the image that is displayed on a Label.

ImageAlign Sets/gets the alignment of an image that is displayed in the control.

TextAlign Sets/gets the alignment of text in the control.

Link Labels

Link labels are new in VB .NET. They're based on the Label class, but also let you

support Web-style hyperlinks to the Internet and other Windows forms. In other words,

you can use a link label control for everything that you can use a label control for, and

you can also make part of the text in this control a link to a Visual Basic object or Web

page.

Properties Means

ActiveLinkColor Sets/gets the color for an active link.

DisabledLinkColor Sets/gets the color for a disabled link.

LinkArea Sets/gets the range in the text to treat as a link.

B.Sc-III (Sem-VI) Unit-4

LinkBehavior Sets/gets a value that represents the behavior of a link.

LinkColor Sets/gets the color for a normal link.

Links Gets the collection of links in the LinkLabel control.

LinkVisited Sets/gets a value specifying if a link should be displayed as

though it had been visited

VisitedLinkColor Sets/gets the color used for links that that have been visited.

Button Control

Buttons provide the most popular way of creating and handling an event in our code

Buttons can be clicked with the mouse or with the Enter key if the button has the focus.

Button control is used to perform an action. Whenever user clicks on a button click

event associated with the button is fired and action associated with the event is

executed.

 You can set the AcceptButton or CancelButton property of a form to let users click a

button by pressing the Enter or Esc keys-even if the button does not have focus. And

when you display a form using the ShowDialog method, you can use the DialogResult

property of a button to specify the return value of ShowDialog.

 You also can change the button's appearance, giving it an image or aligning text and

images in it as you like. You can evem-make it look flat for a "Web" look, setting the

FlatStyle property to FlatStyle.Flat. Or, you can set the FlatStyle property to

FlatStyle.Popup, which means it looks flat until the mouse pointer passes over it, when

the button pops up to give it the standard Windows button appearance.

Properties

Properties Means

DialogResult Gets/sets the value returned to the parent form when the button is

clicked. Often used when you're creating dialog boxes.

BorderStyle Sets/gets the border style for the control.

B.Sc-III (Sem-VI) Unit-4

FlatStyle Sets/gets the flat style appearance of the label control.

Image Sets/gets the image that is displayed on a Label.

ImageAlign Sets/gets the alignment of an image that is displayed in the control.

TextAlign Sets/gets the alignment of text in the control.

Method

Method Means

PerformClick Causes a Click event for a button

Checkboxes:

The checkbox is a control that lets the user select or deselect alternative from the list of

choices. A checkmark or tick will show up on the windows form when a checkbox is

chosen. You use a checkbox to give the user an option, such as true/false or yes/no. The

checkbox control can display an image or text or both.

By default, checkboxes are two-state controls; you use the Checked property to get

or set the value of a two-state checkbox. However, if you set the checkbox's ThreeState

property to True, you make the checkbox into a three-state control. You use the

CheckState property to get or set the value of the three-state checkbox.

The three states are:

Checked— A check appears in the checkbox.

Unchecked— No check appears in the checkbox.

 Indeterminate— A check appears in the checkbox on a gray background.

Properties:

Properties Means

Appearance Gets/sets the appearance of a checkbox.

AutoCheck Specifies if the Checked or CheckState values and the checkbox's

appearance are automatically changed when the checkbox is clicked.

B.Sc-III (Sem-VI) Unit-4

CheckAlign Gets/sets the horizontal and vertical alignment of a checkbox in a

checkbox control.

Checked Gets/sets a value indicating if the checkbox is in the checked state.

ThreeState Specifies if the checkbox will allow three check states rather than two.

Radio Button:

Radio buttons, also called option buttons, are similar to checkboxes—the user can select

and deselect them—except for two things: they are round where checkboxes are square,

and you usually use radio buttons together in groups.

In fact, that's the functional difference between checkboxes and radio buttons—

checkboxes can work independently, but radio buttons are intended to work in groups.

When you select one radio button in a group, the others are automatically deselected.

Properties:

Properties Means

Appearance Gets/sets the appearance of a radio button.

AutoCheck Gets/sets a value indicating whether the Checked value and the

appearance of the control automatically change when the radio button

is clicked.

TextAlign Gets/sets the alignment of the text in a radio button.

Checked Gets/sets a value indicating whether the radio button is checked.

GroupBox

Group boxes are used to provide a grouping for other controls. Group boxes display

frames around their contained controls and can display text in a caption. Generally,

GroupBox control is use as a container for radio button. When RadioButton are grouped

using GroupBox, user can select one RadioButton from each GroupBox.

Creating Group Boxes

B.Sc-III (Sem-VI) Unit-4

You can create group boxes at design time or run time. After you've created the group

boxes, you can drag other controls into them. Note that although you can set the caption

for group boxes with the Text property, group boxes do not have either a BorderStyle

property, nor do they support scroll bars.

ListBoxes

List boxes display a list of items from which the user can select one or more. If there

are too many items to display at once, a scroll bar automatically appears to let the user

scroll through the list. In Visual Basic .NET, each item in a list box is itself an object.

You also can scroll list boxes horizontally when you set the MultiColumn property to

True. Alternatively, when the ScrollAlwaysVisible property is set to True, a scroll bar

always appears.

The SelectedIndex property returns an integer value that corresponds to the selected

item. If the first item in the list is selected, then the SelectedIndex value is 0. You can

change the selected item by changing the SelectedIndex value in code; the

corresponding item in the list will appear highlighted on the Windows form. If no item

is selected, the SelectedIndex value is -1. You also can set which items are selected

with the SetSelected method in code. The SelectedItem property is similar to

SelectedIndex, but returns the object corresponding to the item itself (which is usually

a string value).

The items in list boxes are stored in the Items collection; the Items.Count property

holds the number of items in the list. (The value of the Items.Count property is always

one more than the largest possible SelectedIndex value because SelectedIndex is zero-

based.) To add or delete items in a ListBox control, you can use the Items.Add,

Items.Insert, Items.Clear, or Items.Remove methods. You also can add a number of

objects to a list box at once with the AddRange method. Or you can add and remove

items to the list by using the Items property at design time.

You also can use the BeginUpdate and EndUpdate methods. These enable you to add a

large number of items to the ListBox without the list box being redrawn each time an

item is added to the list. The FindString and FindStringExact methods enable you to

search for an item in the list that contains a specific search string.

You also can support multiple selections in list boxes. The SelectionMode property

determines how many list items can be selected at a time; you can set this property to

None, One, MultiSelect, or MultiExtended:

• MultiExtended— Multiple items can be selected, and the user can use the Shift,

Ctrl, and arrow keys to make selections.

• MultiSimple— Multiple items can be selected.

• None— No items may be selected.

• One— Only one item can be selected.

B.Sc-III (Sem-VI) Unit-4

When you support multiple selections, you use the Items property to access the items

in the list box, the SelectedItems property to access the selected items, and the

SelectedIndices property to access the selected indices.

Properties:

Properties Means

ColumnWidth Gets/sets column width; use with multicolumn list boxes.

HorizontalScrollbar Gets/sets if a horizontal scroll bar is displayed in the list box.

Items Returns a collection of the items of the list box.

MultiColumn Gets/sets if the list box supports multiple columns.

ScrollAlwaysVisible Gets/sets if a vertical scroll bar is always shown.

SelectedIndex Gets/sets the index of the list box's currently selected item.

SelectedItem Gets/sets the selected item in the list box.

SelectionMode Gets/sets the mode with which items are selected.

Sorted Gets/sets if the items in the list box are sorted. The sort is
alphabetical.

Text Gets the text of the selected item in the list box.

Methods

Methods Means

BeginUpdate
Turns off visual updating of the list box until the EndUpdate

method is called.

B.Sc-III (Sem-VI) Unit-4

ClearSelected
Unselects all the items in a list box.

EndUpdate
Resumes visual updating of the list box.

FindString

Finds the first item in the list box that begins with the indicated

string.

FindStringExact
Finds the first item in the list box that matches the indicated string

exactly.

CheckListBoxes

CheckListBox is the combination of CheckBox and ListBox that means that

CheckListBox inherit from CheckBox as well ListBox. So, all the properties and

methods of ListBox and CheckBox are applicable to CheckListBox.

ComboBoxes

ComboBox represents list of items in a drop down list type structure from which user

can select only one item at a time. ComboBox control comes with built in TextBox so

user can enter new item if it is not available in the list of ComboBox. It occupies less

space on the form because of its drop down structure.

By default, a combo box displays a text box with a hidden drop-down list. The

DropDownStyle property determines the style of combo box to display.

DropDownStyle property include:

i. DropDown (the default)-Includes a drop-down list and a text box. The user can

select from the list or type in the text box.

ii. Simple-Includes a text box and a list, which doesn't drop down. The user can

select from the list or type in the text box. The size of a simple combo box

includes both the edit and list portions. By default, a simple combo box is sized

so that none of the list is displayed. Increase the Height property to display more

of the list.

iii. DropDownList-This style allows selection only from the drop-down list. This is

a good one to keep in mind when you want to restrict the user's input, but if you

want to use this one, you also should consider simple list boxes.

Properties of ComboBox

Properties Means

B.Sc-III (Sem-VI) Unit-4

DropDownStyle Gets/sets the style of the combo box.

MaxDropDownItems Gets/sets the maximum number of items visible in the drop

down part of a combo box.

Items Returns a collection of the items of the list box.

MaxLength Gets/sets the maximum number of characters in the combo

box's text box.

SelectedIndex Gets/sets the index of the list box's currently selected item.

SelectedItem Gets/sets the selected item in the list box.

Sorted Gets/sets if the items in the list box are sorted. The sort is

alphabetical.

Text Gets the text of the selected item in the list box.

Methods of ComboBox

Methods Means

BeginUpdate
Turns off visual updating of the list box until the EndUpdate

method is called.

ClearSelected
Unselects all the items in a list box.

EndUpdate
Resumes visual updating of the list box.

FindString

Finds the first item in the list box that begins with the indicated

string.

FindStringExact
Finds the first item in the list box that matches the indicated string

exactly.

PictureBox

B.Sc-III (Sem-VI) Unit-4

The PictureBox control is used for displaying images on the form. The Image property of the

control allows you to set an image both at design time or at run time.

Properties of the PictureBox Control

Properties Means

ErrorImage Gets or specifies an image to be displayed when an error occurs

during the image-loading process or if the image load is cancelled.

Image
Gets or sets the image that is displayed in the control.

ImageLocation Gets or sets the path or the URL for the image displayed in the control.

SizeMode

Determines the size of the image to be displayed in the control. This

property takes its value from the PictureBoxSizeMode enumeration,

which has values –

Normal— Standard picture box behavior (the upper-left corner of the

image is placed at upper left in the picture box).

StretchImage— Allows you to stretch the image in code.

AutoSize— Fits the picture box to the image.

CenterImage— Centers the image in the picture box.

Text
Gets or sets the text for the picture box.

Method of PictureBox

Method Means

FromFile
This method is versatile and can load images from bitmap (.bmp),

icon (.ico) or metafile (.wmf), JPEG (.jpg), GIF (.gif) files, and

other types of files.

Example:

B.Sc-III (Sem-VI) Unit-4

PictureBox1.Image=

Image.FromFile("Path\image.jpg")

ScrollBar

The ScrollBar controls display vertical and horizontal scroll bars on the form. This is

used for navigating through large amount of information. There are two types of scroll

bar controls: HScrollBar for horizontal scroll bars and VScrollBar for vertical scroll

bars. These are used independently from each other.

You use the Minimum and Maximum (formerly Min and Max) properties to set the

range of values the user can select using the scroll bar. The LargeChange property sets

the scroll increment that happens when the user clicks in the scroll bar but outside the

scroll box. The SmallChange property sets the scroll increment when the user clicks the

scroll arrows at each end of the scroll bar.

The default values for the Minimum, Maximum, SmallChange, and LargeChange

values are 0, 100, 1, and 10 respectively. You get the actual setting of a scroll bar with

its Value property.

Properties of the ScrollBar Control

The following are some of the commonly used properties of the ScrollBar control –

Properties

Means

AutoSize

Gets or sets a value indicating whether the ScrollBar is automatically
resized to fit its contents.

BackColor

Gets or sets the background color for the control.

ForeColor Gets or sets the foreground color of the scroll bar control.

LargeChange

Gets or sets a value to be added to or subtracted from the Value property
when the scroll box is moved a large distance.

Maximum

Gets or sets the upper limit of values of the scrollable range.

Minimum Gets or sets the lower limit of values of the scrollable range.

B.Sc-III (Sem-VI) Unit-4

SmallChange

Gets or sets the value to be added to or subtracted from the Value
property when the scroll box is moved a small distance.

Timers

Timers are also very useful controls, because they let you create periodic events. Timers

are no longer controls but components, and they do not appear in a window at run time.

At design time, they appear in the component tray underneath the form you've added

them to. There's a timer at work behind the scenes in the Timers i.e., in backend.

Properties of Timer

Properties Means

Enabled Gets/sets whether the timer is running.

Interval Gets/sets the time (in milliseconds) between timer ticks.

Example:

Timer1.Interval = 2000

Methods of Timer

Method Means

Start Starts the timer.

Example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Timer1.Start()

 End Sub

B.Sc-III (Sem-VI) Unit-4

Stop Stops the timer.

Example:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Timer1.Stop()

 End Sub

Tool Tip

All Windows users know what tool tips are—they're those small windows that appear

with explanatory text when you let the mouse rest on a control or window. That's what

tool tips are used for—to give quick help when the mouse rests on an item.

To connect a tool tip with a control, you use its SetToolTip method. To connect the

tool tip to Button1, you can use this code:

ToolTip1.SetToolTip(Button1, "This is a button")

You also can use the GetToolTip method to get information about a tool tip object.

The important properties for tool tip controls are Active, which must be set to True for

the tool tip to appear, and AutomaticDelay, which sets the length of time that the tool

tip is shown, how long the user must point at the control for the tool tip to appear, and

how long it takes for subsequent tool tip windows to appear. IsBalloon property set to

True indicates whether tool tip will appear balloon window as shown below fig.

Public Class Form1

 Private Sub Button1_GotFocus(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Button1.GotFocus

 ToolTip1.IsBalloon = True

 ToolTip1.SetToolTip(Button1, "This is a button")

 ToolTip1.GetToolTip(Button1)

 End Sub

End Class

B.Sc-III (Sem-VI) Unit-4

Fig: Tool Tip at work when Gotfocus event occurs

