

 Unit-IV : Introduction to Java

B. Sc. II (CBCS)
Semester-IV
2023-2024

PROF. V. V. AGARKAR
Assistant Professor & Head

Department of Computer Science

Shri. D. M. Burungale Science & Arts College, Shegaon, Dist. Buldana

COMPUTER
 SCIENCE

 2CS2 : RDBMS and Core Java

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (1) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Unit – IV

Introduction to JAVA: History and evolution, Feature, JRE, JDK, JVM,

Tokens of Java, Data types and Literals, Operators, Structure of Java

Program, Access controls, modifiers, type conversion and casting, Control

of Flow: Selection Statements, Iteration Statements. Command Line

Argument, Arrays.

Introduction to JAVA

The Java programming language is a general-purpose, object-oriented language. Its

syntax is similar to C and C++, but it omits many of the features that make C and C++

complex, confusing, and unsafe.

James Gosling and colleagues at Sun Microsystems developed java language in the

early 1990s, later it was acquired by Oracle Corporation. Unlike conventional languages

which are generally designed either to be compiled to native (machine) code, or to be

interpreted from source code at runtime, Java is intended to be compiled to a bytecode, which

is then run by a Java Virtual Machine (JVM).

The Java language is mainly used for: mobile applications (especially Android apps),

desktop applications, web applications, web servers, application servers, games, database

connection and much more.

Java is a platform-neutral language. Java is the first programming language that is

not tied to any particular hardware or operating system. Program developed in Java can be

executed anywhere on any system.

History and Evolution of Java

James Gosling, Patrick Naughton, Chris Warth, Mike Sheridan, and Ed Frank

initiated the Java language project in June 1991. The idea was to develop a language which

was platform-independent and which could create embedded software for consumer

electronic devices. It took 18 months to develop and had an initial name as Oak which was

renamed to Java in 1995, due to copyright issues.

The popularity of Java language can be recognized to the popularity of World Wide

Web and its capacity to create web pages. In 1995, Java version 1.0 was launched. In 1996,

JDK 1.0 was released. In the year 1997, JDK 1.1 was released. Then the Java servlets

developer kit was released. This resulted into increase of large number of Java developers.

In 1998, Java 2 with version 1.2 open source technology was launched. It gained more

importance in 1998 because of the spread of the internet. In 1999, Java 2 Platform Standard

Edition (J2SE) and Enterprise Edition (J2EE) were released. Then same year Java Server

Pages (JSP) technology was released. The JSP deals with client and server side operations.

Then in the year 2000, Java powered PDAs was launched.

In the year 2000, J2SE with SDK 1.3 was released. In the year 2002, J2SE with SDK

1.4 was released. In the year, 2003 mobile phones powered by Java were developed and used

by the customers. In the year 2004, J2SE with JDK 5.0 was released. This is known as J2SE

5.0.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (2) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Feature of Java

The inventers of Java wanted to design a language which could offer solutions to

some of the problems encountered in modem programming. They wanted the language to be

not only reliable, portable and distributed but also simple, compact and interactive. Sun

Microsystems officially describes Java with the following features:

1) Compiled and Interpreter

2) Platform Independent and Portable

3) Object Oriented

4) Robust and Secure

5) Distributed

6) Familiar, Simple and Small

7) Multithreaded and Interactive

8) High Performance

9) Dynamic and Extensible

10) Architectural Neutral

1) Compiled and Interpreter: Usually a computer language is either compiled or

interpreted. Java combines both these approaches thus making Java a two stage system.

First, Java compiler translates source code into what is known is bytecode instructions.

Bytecode are not machine instructions and therefore, in the second stage, Java interpreter

generates machine code that can be directly executed by the machine that is running the

Java program. Thus, Java is both a compiled and an interpreted language.

2) Platform-Independent and Portable: The most significant contribution of Java over

other languages is its portability. Java programs can be easily moved from one computer

system to another anywhere and anytime. Changes and upgrades in operating systems,

processors and system resources will not force any changes in Java programs. This is the

reason why Java has become a popular language for programming on internet which

interconnects different kinds of systems worldwide. We can download a Java applet from

a remote computer onto our local system via internet and execute it locally.

Java ensures portability in two ways. First, Java compiler generates bytecode instructions

that can be implemented on any machine. Secondly, the sizes of the primitive data types

are machine-independent.

3) Object Oriented: Java is a true object-oriented language. Almost everything in Java is

an object. All program code and data reside within objects and classes. Java comes with

an extensive set of classes, arranged in packages, which we can use in our programs by

inheritance. The object model in Java is simple and easy to extend.

4) Robust and Secure: Java is a robust language. It provides many safeguards to ensure

reliable code. It has strict compile time and run time checking for data types. It is

designed as a garbage-collected language relieving the programmers virtually all memory

management problems. Java also incorporates the concept of exception handling which

captures serious errors and eliminates any risk of crashing the system.

Security becomes an important issue for a language that made for programming on

internet. Threat of viruses and abuse of resources are everywhere. Java systems not only

verify all memory access but also ensure that no viruses are communicated with an

applet. The absence of pointers in Java ensures that programs cannot gain access to

memory locations without proper authorization.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (3) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

5) Distributed: Java is designed as a distributed language for creating applications on

networks. It has the ability to share both data and programs. Java applications can open

and access remote objects on internet as easily as they can do in a local system. This

enables multiple programmers at multiple remote locations to collaborate and work

together on a single project.

6) Familiar, Simple and Small: Java is a small and simple language. Many features of C

and C++ that are either redundant or sources of unreliable code are not part of Java. For

example, Java does not use pointers, preprocessor header files, goto statement and many

others. It also eliminates operator overloading and multiple inheritance.

Familiarity is another striking feature of Java. To make the language look familiar to the

existing programmers, it was modeled on C and C++ languages. Java uses many

constructs of C and C++ and therefore, Java code “looks like a C++” code, In fact, Java is

a simplified version of C++.

7) Multithreaded and Interactive: Multithreaded means handling multiple tasks

simultaneously. Java supports multithreaded programs. This means that we need not wait

for the application to finish one task before beginning another. For example, we can listen

to an audio clip while scrolling a page and at the same time download an applet from a

distant computer. This feature greatly improves the interactive performance of graphical

applications.

8) High Performance: Java performance is impressive for an interpreted language, mainly

due to the use of intermediate bytecode. According to Sun, Java speed is comparable to

the native C/C++. Java architecture is also designed to reduce overheads during runtime.

The inclusion of multithreading enhances the overall execution speed of Java programs.

9) Dynamic and Extensible: Java is a dynamic language. Java is capable of dynamically

linking in new class libraries, methods, and objects. Java can also determine the type of

class through a query, making it possible to either dynamically link or abort the program,

depending on the response.

Java support functions written in other languages such as C and C++. These functions are

known as native methods. This facility enables the programmers to use the efficient

functions available in these languages. Native methods are linked dynamically at runtime.

10) Architectural Neutral: Architecture represents processor. Java programs are compiled

into bytecode format which does not depend on any machine architecture but can be

easily translated into a specific machine by a Java Virtual Machine (JVM) for that

machine.

Java Development Kit (JDK)

JDK is an abbreviation for Java Development Kit. It is a software development

environment used for developing Java applications and applets. It includes all the tools,

executable and binaries required to compile, debug and execute a Java program. Some of the

contents of JDK are the Java Runtime Environment (JRE), an interpreter/loader (Java), a

compiler (javac), an archiver (jar), a documentation generator (Javadoc), and other tools

needed in Java development.

JDK is platform dependent i.e. there is separate installer for Windows, Mac, and

UNIX systems. The version of JDK represents version of Java. It physically exists. Following

Table 4.1 lists some of the JDK tools and their descriptions:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (4) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Table 4.1: Java Development Tools

Tools Description

appletviewer Enables to run Java applets (without using a Java-compatible browser).

javac
A Java compiler, which translate Java source code to bytecode files that

the interpreter can understand.

java
A Java interpreter, which runs applets and applications by reading and

interpreting bytecode files.

javap
A Java disassemble, which enables us to convert bytecode files into a

program description.

javah Produce header files for use with native methods.

javadoc Creates HTML-format document from Java source code files.

jdb Java debugger, which helps to find errors in the programs.

Java Run-time Environment (JRE)

Java Run-time Environment (JRE) is the part of the Java Development Kit (JDK). It is

a freely available software distribution which has Java Class Library, specific tools, and a

stand-alone JVM. It is the most common environment available on devices to run java

programs. The Java source code gets compiled and converted to Java bytecode. To run this

bytecode on any platform, it requires JRE. The JRE loads classes, verify access to memory,

and retrieves the system resources. JRE acts as a layer on the top of the operating system.

Java Virtual Machines (JVM)

Java compiler produces bytecode for a machine that physically does not exist. This

machine is called the Java Virtual Machine and it exists only inside the computer memory.

JVM is a part of JRE (Java Run Environment). JVM makes java platform independent.

Java Virtual Machine (JVM) is an engine that provides runtime environment in which

java bytecode can be executed (i.e. JVM is a program that enables a computer to run Java

programs). JVM is a part of Java JRE. JVM is available for many hardware and software

platforms. JVM analyze the bytecode, interprets it, and execute the same bytecode to display

the output. That is, JVM converts Java bytecode into machines language.

Note That, following figure-4.1 shows the relationship between JDK, JRE and JVM:

 [Fig. 4.1 : Relationship between JDK, JRE and JVM]

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (5) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Java Tokens

A token is a smallest individual element of a program that is meaningful to the

computer. During compilation of a program, the compiler scans the text in your source code

and extracts individual tokens. The Java compiler uses it for constructing expressions and

statements. Generally, a Java program is a collection of tokens, comments and white spaces.

Java language includes five types of tokens. They are:

 Reserved Keywords  Identifiers  Literals

 Operators  Special symbols

Keywords

Keywords are predefined; reserved words used in Java programming that have special

meanings to the compiler. Java language has reserved 50 words as keywords. Table 4.2 lists

these keywords.

Since keywords have specific meaning in Java, we cannot use them as names for

variables, classes, methods, objects or any other identifiers. All keywords are to be written in

lower-case letters, since Java is case-sensitive.

Table 4.2 : Java Keywords

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Note:- The keywords const and goto are reserved, even though they are not currently used.

true, false, and null might seem like keywords, but they are actually literals; you cannot

use them as identifiers in your programs.

Identifiers

Identifiers in Java are symbolic names used for identification. A Java identifier is a

name given to a package, class, interface, method, object, array or variable. However, in Java,

there are some keywords or reserved words; that cannot be used as an identifier.

 Rules for defining Java Identifiers

There are certain rules for defining a valid Java identifier. All these rules must be

followed; otherwise compile-time errors can occur. Following are the rules:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (6) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Rule 1 : An identifier can only contain alphabetic characters [A-Z] or [a-z], numbers

[0-9], underscore (_) and a dollar sign ($).

Rule 2 : An identifier should not contain any blank space.

Rule 3 : Identifiers should not start with digits [0-9]. The starting character should be

alphabet [A-Z] [a-z], dollar ($) or underscore (_).

Rule 4 : Java identifiers are case-sensitive.

Rule 5 : There is no limit on the length of the identifier in Java, but it is advisable to

use an optimum length of 4 – 15 letters only.

Rule 6 : Reserved words (keywords) cannot be used as identifiers.

Variable

A variable is the basic unit of storage in a program. It is a data container which stores

the data value during Java program execution. A variable is the name of allocated memory

area. All the operations done on the variable affects the allotted memory location. Every

variable is assigned a data type that designates the type and range of value it can hold. The

value stored in a variable can be changed during program execution. In Java, all variables

must be declared before use. Variable names are identifiers, so all the rules for naming

identifiers are also applicable to naming variables.

 Declaring (or creating) Variables

In Java, the variables have to be declared before it is using in the program. As soon as the

compiler gets a variable declaration/initialization command, it reserves memory with the

variable name mentioned in the program. Variable declaration does four things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

3. It reserves enough memory for the variable.

4. The place of declaration (in the program) decides the scope of the variable.

The general declaration form of a variable is:

type variablename1 [,variablename2, ...];

If declaring more than one variable, then variable names are separated by commas. A

declaration statement must end with a semicolon.

Example :-

Some valid declarations are:

int count;

float x, y;

char c1, c2, c3;

Data types

Data types specify the size and type of values that can be stored. Every variable in

Java has a data type. Data types in Java under various categories are shown in Fig. 4.4.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (7) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

[Fig. 4.4: Data types in Java]

Data types in Java can be categorised mainly in two types:

1. Primitive (Intrinsic) Data Types

2. Non-Primitive (Derived) Data Types

1. Primitive Data Types

Primitive datatypes are predefined (built-in) by the Java language and named by a

keyword. There are two types of primitive data types: Numeric and Non-numeric.

A) Numeric data types:

 Numeric data types are further divided into Integer and Floating point data types.

a) Integer types

Integer types can hold whole numbers such as 512, -87, and 1025. The size of the

values that can be stored depends on the selected integer data type. Java supports four

types of integers: byte, short, int, and long. Java does not support the concept of

unsigned types and therefore all Java values are signed meaning they can be positive or

negative. Table 4.3 shows, the memory size and range of all the four integer data types.

Table 4.3: Size and range of Integer type

Type Size Minimum Value Maximum Value
byte 1 byte -128 127
short 2 byte -32,768 32,767
int 4 byte -2,147,483,648 2,147,483,647
long 8 byte -9,223,372,036,854,775,808 9,223,372,036,854,775,807

b) Floating point types

Floating point type holds numbers containing fractional parts such as 72.95 and -8.123.

There are two kinds of floating point storage in Java: the float type values are single-

precision numbers while the double types represent double-precision numbers. Table

4.4 gives the size and range of these two types.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (8) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Table 4.4: Size and range of Floating Point type

Type Size Minimum Value Maximum Value
float 4 byte 3.4e-038 3.4e+038
double 8 byte 1.7e-308 1.7e+308

B) Non-Numeric data types:

 There are two types of non-numeric data types in Java: Character and Boolean type.

a) Character type

To store character constants in memory, Java provides a character data type called

char. The char type assumes a size of 2 bytes but, it can hold only a single character.

b) Boolean Type

Boolean type is used to test a particular condition during the execution of the program.

There are only two values that a boolean type can take: true or false, Boolean type

is denoted by the keyword boolean and uses only one bit of storage.

2. Non-Primitive (Derived) Data Types

Non-Primitive data types in Java are not pre-defined data types. It is a data type which

has to be created by a programmer as needed. There are many types of Non-Primitive data

type such as array, class, interface, etc.

a) Array

An array is a group of homogeneous data items that share a common name. Arrays

offer a convenient means of grouping related information.

b) Classes

Class defines a new data type. Once defined, this new type can be used to create

objects of that type. Thus, a class is a template for an object, and an object is an

instance of a class.

c) Interface

An interface is basically like a class, but interfaces define only abstract method and

final data items.

Literals

In Java, literal is a notation that represents a fixed value in the program. Literals are

the constant values that appear directly in the program. It can be assigned directly to a

variable. Thus literals are also known as constants.

 Types of Java Literals

In Java, there are five types of literals: integer literals, floating-point literals, character

literals, string literals and Boolean literals.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (9) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

1) Integer Literals

An integer literal is a sequence of digits. There are four types of integer literal:

i) Decimal Literals

These are literals that consist of digits from 0 to 9. It may have a positive (+) or

negative (-). Note that between numbers commas and non-digit characters are not

permitted. For example: 5678, +657, -89, etc.

ii) Octal Literals

These are literals that consist of digits from 0 to 7 and proceeded by 0 (zero). For

example: 045, 05326.

iii) Hexadecimal Literals

These are literals that consist of digits from 0 to 9 and character from A to F or a to f.

Also these literals are preceded by 0x or 0X (zero-x). For example: 0x1A9, 0XA8D.

iv) Binary Literals

These are literals that consist of digits 0 and 1 and preceded by 0b or 0B (zero-b). For

example: 0b1101, 0B0101.

2) Floating Point Literals

Java has two kinds of floating-point numbers: float and double. By default, every

floating-point literal is of double type. But we can specify floating-point literal as float

type by suffixed with f or F. We can specify explicitly floating-point literal as double

type by suffixed with d or D. For Floating-point data types, we can specify literals in only

decimal form, and we can‟t specify in octal and hexadecimal forms. For examples:

123.45, 3.14e0, 1.0e-6D, 3.14F.

3) Character Literals

A character literal represents a single character that is enclosed in a single quote („‟). A

character literal is that it must contain a single character enclosed within a single quote. A

char data type is used to represent a character literal. For example:

char ch = „A‟;

Java allows having certain non-graphic characters as character literals. Non-graphic

characters are those that can‟t directly take from the keyboard; example backspaces, tabs,

etc. These non-graphic characters can be represented as escape sequences.

4) String Literals

String literal is a sequence of characters that is enclosed between double quotes ("")

marks. It may be alphabet, numbers, special characters, blank space, etc. For example:

"Jack", "12345", "\n", etc.

5) Boolean Literals

Boolean literals allow only two values and thus have two literals– true: it represents a real

Boolean value and false: it represents a false Boolean value. For example,

boolean b = true;

boolean d = false;

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (10) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Operators

An operator is a symbol that tells the computer to perform certain mathematical or

logical manipulations. Operators are used in programs to manipulate data and variables. They

usually form a part of mathematical or logical expressions. Java supports a rich set of

operators. Java operators can be classified into a number of related categories as below:

1. Arithmetic operators 5. Increment and decrement operators

2. Relational operators 6. Conditional operators

3. Logical operators 7. Bitwise operators

4. Assignment operators 8. Special operators

1) Arithmetic operators

Arithmetic operators are used to perform arithmetic operations on variables and primitive

data types. Java supports all the basic arithmetic operators. They are listed in Table 4.5:

Table 4.5: Arithmetic Operators

Operator Meaning

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication

/ Division

% Modulo division (Reminder)

Arithmetic operators are used as shown below:

a - b a + b

a * b a/b

a % b -a * b

Here a and b may be variables or constants and are known as operands.

2) Relational operators

Relational operators are used to compare two quantities on either side. Java supports six

relational operators in all. These operators and their meanings are shown in Table 4.6.

Table 4.6: Relational Operators

Operator Meaning

< is less than
<= is less than or equal to
> is greater than
>= is greater than or equal to
== equal to
!= not equal to

An expression such as

a < b or x > 20

containing a relational operator is termed as a relational expression. The value of

relational expression is either true or false.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (11) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

3) Logical operators

Logical operators allow making a decision based on multiple conditions. Each operand is

considered as a condition that can be evaluated to a true or false value. These values are

then used to determine the overall value of the logical operator. Java supports three

logical operators. These operators and their meanings are shown in Table 4.7.

Table 4.7: Logical Operators

Operator Meaning

&& logical AND

| | logical OR

! logical NOT

An expression which combines two or more relational expressions is termed as a logical

expression or a compound relational expression.

Some examples of the usage of logical expressions are:

1. if(age > 55 && salary < 1000)

2. if(number < 0 || number > 100)

4) Assignment operators

Assignment operators are used to assign the value of an expression to a variable. We

already have seen the usual assignment operator, „=‟. In addition, Java has a set of

„shorthand‟ assignment operators which are used in the form:

v op= exp;

Where v is a variable, exp is an expression and op is a Java binary operator. The operator

op= is known as the shorthand assignment operator. Some of the commonly used

shorthand assignment operators are illustrated in Table 4.8:

Table 4.8: Shorthand Assignment Operators

Operator Example Meaning

+= a += 10 a = a + 10

-= a -= 5 a = a - 5

*= a *= 10 a = a * 10

/= a /= 2 a = a / 2

%= a %= 2 a = a % 2

5) Increment Decrement operators

Java has two very useful operators that are the increment and decrement operators:

++ and --

The operator ++ adds 1 to the operand while -- subtracts 1. Both are unary operators and

are used in the following form:

++m; or m++;

-- m; or m --;

++m; is equivalent to m = m+1; (or m += 1;)

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (12) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

--m; is equivalent to m = m-1; (or m -= 1;)

While ++m and m++ mean the same thing when they form statements independently, they

behave differently when they are used in expressions on the right-hand side of an

assignment statement. Consider the following:

m = 5;

y = ++m;

In this case, the value of y and m would be 6. If we rewrite the above statement as:

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the

operand and then the result is assigned to the variable on left. On the other hand, a postfix

operator first assigns the value to the variable on left and then increments the operand.

6) Conditional operators

The character pair ?: is a ternary operator available in Java. This operator is used to

construct conditional expressions of the form :

exp1 ? exp2 : exp3

Where, exp1, exp2, and exp3 are expressions.

The operator ?: works as: exp1 is evaluated first, if it is nonzero (true), then the

expression exp2 is evaluated and becomes the value of the conditional expression. If exp1

is false, exp3 is evaluated and its value becomes the value of the conditional expression.

Note that only one of the expressions (either exp2 or exp3) is evaluated. For example:

a = 10, b = 15;

x = (a>b)? a : b;

In this example, x will be assigned the value of b. This can also be achieved using the

if…else statement as follows:

if (a > b)

 x = a;

else

 x = b;

7) Bitwise operators

Java supports special operators known as bitwise operators for manipulation of data at

values of bit level. These operators are used for testing the bits, or shifting them to the

right or left. Bitwise operators may not be applied to float or double, Table 4.9 lists the

bitwise operators:

Table 4.9: Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ one‟s complement

<< shift left

>> shift right

>>> shift right with zero fill

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (13) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

8) Special operators

Java supports special operators such as instanceof operator and member selection

operator (.).

a) Instanceof Operator

The instanceof is an object reference operator and returns true if the object on the

left-hand side is an instance of the class given on the right-hand side. This operator is

used to determine whether the object belongs to a particular class or not. Example:

person instanceof student

is true if the object person belongs to the class student; otherwise it is false.

b) Dot Operator

The dot operator (.) is used to access the instance variables and methods of class

objects. Examples:

Person1.age // Reference to the variable age

Person1.salary() // Reference to the method salary()

It is also used to access classes and sub-packages from a package.

Structure of Java Program

A Java program may contain many classes of which only one class defines a main

method. Classes contain data members and methods that operate on the data members of the

class. Methods may contain data type declarations and executable statements. To write a Java

program, we first define classes and then put them together. A Java program may contain one

or more sections as shown in Fig. 4.3.

Documentation Section

Suggested

Package Statement

Optional

Import Statement

Optional

Interface Statements

Optional

Class Definitions

Optional

Main method Class

{

 main Method Definition

}

Essential

 [Fig. 4.3: General Structure of Java program]

Documentation Section

The documentation section is optional for a Java program. It includes basic information

about a Java program. The information includes the author's name, date of creation,

program name, and description of the program to understand code. It improves the

readability of the program. Java compiler ignores whatever written in the documentation

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (14) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

section during the execution of the program. To write the statements in the documentation

section, comments are used. The comments may be single-line (//), multi-line (/* … */),

and documentation comments (/** … */).

Package Statement

Java that allows you to declare your classes in a collection called package. A package is a

group of classes that are defined by a name. There can be only one package statement in a

Java program and it has to be at the beginning of the code before any class or interface

declaration. This statement is optional.

For example, following statement declares a package student and informs the compiler

that the classes defined here belong to student package:

package student;

Import Statements

Many predefined classes are stored in packages in Java. An import statement is used to

refer to the classes stored in other packages. An import statement is always written after

the package statement but it has to be before any class declaration. Many classes can be

imported in a single program and hence multiple import statements can be written. This

is similar to the #include statement in C.

For example: Take a look at the examples given below to understand how import

statement imports a specific class or all classes from a package:

1) import java.util.Date;

This imports only the Date class from the java util package.

2) import java.applet.*;

This imports all the classes from the java applet package.

3) import student;

This imports the student class.

Interface Statements

This section is used to specify an interface in Java. It is an optional section which is

mainly used to implement multiple inheritance in Java. An interface is a lot similar to a

class in Java but it contains only constants and method declarations and cannot be

instantiated. To declare an interface, interface keyword is used.

Class Definitions

A Java program may contain multiple class definitions. Classes are the primary and

essential elements of a Java program. The class keyword is used to define the class. The

class contains information about user-defined methods, variables, and constants. Every

Java program has at least one class that contains the main() method.

Main Method Class

Every Java program requires a main() method as its starting point i.e. the execution of

all Java programs starts from the main() method. The main() method must be inside the

class. Inside the main() method, objects can be created and call the methods. On

reaching the end of main() method, the Java program terminates.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (15) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Access controls

Access Control in Java refers to the mechanism used to restrict or allow access to

certain parts of a Java program, such as classes, methods, and variables. Access control

determines which classes and objects can access specific codes or data within a program. By

controlling access to different parts of the program, Java‟s access control mechanism

promotes code encapsulation, and information hiding, and reduces the errors and security

vulnerabilities in the program. Access control in Java can be implemented by using access

control modifiers, which are keywords placed before the declaration of the class member.

Modifiers

Access control modifiers in Java are keywords that can be used to control access to

classes, fields, and methods. Access control modifiers determine the level of access that other

classes or objects have to a particular class, field, or method. There are two types of modifiers

in Java: access modifiers and non-access modifiers.

The four access control modifiers in Java are:

1. private

The private access control modifier in Java is used to restrict access to a class member

to only within the same class. This means that a private member cannot be accessed from

outside of the class, including from any subclass of the class.

2. default

The access level of a default modifier is only within the same package. This means that

a default member cannot be accessed from outside of the package. If you do not specify

any access level, it will be the default.

3. protected

The protected access control modifier in Java is used to provide access to a class

member within the same class, any subclass of the class, or any class within the same

package. This means that a protected member can be accessed from within the same class,

any subclass of the class, or any class within the same package, but cannot be accessed

from any class outside of the package, even if it is a subclass of the protected class.

4. public

The public access control modifier in Java is used to provide unrestricted access to a

class member from any other class, including classes that are not in the same package.

This means that a public member can be accessed from within the class, outside the class,

within the package and outside the package.

There are many non-access modifiers, such as static, abstract etc.

Type conversion and casting

Typecasting is the process of converting the value of a data type into another data

type. This conversion is done either automatically or manually. The compiler performs the

automatic conversion, and a programmer does the manual conversion.

To use a variable in a particular way in automatic conversion, we need to explicitly

tell the Java compiler to convert a variable from one data type to another data type.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (16) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

 Types of Type Casting

1. Widening Type Casting

Widening type casting is the process of converting a lower data type to a higher data type.

It is also known to as implicit conversion or casting down. This process is performed

automatically and is safe, as there is no risk of data loss. It takes place when:

 Both data types must be compatible with each other.

 The target type must be larger than the source type.

byte → short → char → int → long → float → double

(From left to right: Lower data type to Higher data type)

2. Narrowing Type Casting

Narrowing type casting is the process of converting a higher data type to a lower one. It is

also known as explicit conversion or casting up. It is done manually by the programmer.

If we do not perform casting then the compiler reports a compile-time error.

double → float → long → int → char → short → byte

(From left to right: Higher data type to Lower data type)

Syntax:

datatype variableName = (datatype)value;

Example:

double a = 166.66;

long b = (long)a;

Control of Flow

Java compiler executes the statements in the program sequentially from top to bottom,

in the order that they appear. However, Java provides statements that can be used to control

the flow of Java code. Such statements are called control flow statements. Control flow

statements, however, break up the flow of sequential execution by employing decision

making, looping, and branching, enabling your program to conditionally execute particular

blocks of code. Java provides three types of control flow statements:

1. Selection (Decision Making) statements

2. Iteration statements

3. Jump statements

1) Selection (Decision Making) Statements

The Selection or decision-making statements decide which statement to execute and

when. These statements evaluate the Boolean expression and control the program flow

depending upon the result of the condition provided. That is, a certain block of code is

executed when the condition is fulfilled, otherwise another block is executed.

Java supports two selection or decision-making statements: if and switch.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (17) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

a) If Statements

The if statement is used to decide which block of statements will execute depending on a

condition. There are various types of if statement in Java:

i) if statement

ii) if-else statement

iii) if-else-if ladder

iv) nested if statement

i) if statement

The if statement is the simplest decision-making statement. It is used to decide whether a

certain statement or block of statements will be executed or not, i.e. if a condition is true

then a block of statement is executed otherwise not.

The if statement checks a particular condition; if the condition evaluates to true, it will

execute a statement or a set of statements. Otherwise, if the condition is false, it will

ignore that statement or set of statements. The test expression of if statement must be of

Boolean type. The syntax of simple if statement is:

if (condition)

 statement1;

Where, statement1 may be a single statement or a compound statement enclosed in curly

braces i.e. a block. The condition is any expression that returns a Boolean value.

First the condition is evaluated and if it is true, then statement1 is executed. But if the

condition evaluates to false, statement1 will be skipped and control will exit the if

statement. For examples:

1. if(amount >= 5000)
 discount = 5;

2. if(mark >= 33)
 {

 Grace = 3;

 cando = 4;

 }

ii) if-else statement

The if-else statement can perform two different operations, i.e., one is for the

correctness of the condition, and other is for the incorrectness of the condition. The if-else

statement executes a block (say if-block) of code if a specified condition is true and if

the condition is false, another block (say else-block) of code can be executed. In any

situation the if and else block cannot be executed simultaneously. The syntax of if-

else statement is:

if (condition)

{

 Statement block-1;

}

else

{

 Statement block-2;

}

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (18) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Where, statement block-1 and statement block-2 may be a single statement or a compound

statement enclosed in curly braces i.e. a block. The condition is any expression that

returns a Boolean value.

First the condition is evaluated if it is true, then statement block-1 is executed. Otherwise,

statement block-2 is executed. In no case will both statements be executed.

Example:

if(age >= 18)

{ System.out.println(“Eligible to vote”); }

else

{ System.out.println(“Not eligible to vote”); }

iii) if-else-if ladder

The if-else-if ladder helps user to decide from multiple conditions. The if statements

are executed from the top to down. As soon as one of the conditions in the if is true, the

statement associated with that if is executed, and the rest of the else-if ladder is

bypassed. If none of the conditions is true, then the final else statement will be executed.

The syntax of if-else-if ladder is:

if(condition1)

 statement1;

else if(condition2)

 statement2;

else if(condition3)

 statement3;

...

else

 default-statement;

Where, the condition1, condition2, condition3, … are any expression that returns a

Boolean value. The statement1, statement2, statement3, …, default-statement may be a

single statement or a compound statement enclosed in curly braces i.e. a block.

Example:

if(mark >= 75)

division = “Distinction”;

else if(mark >= 60)

division = “First class”;

else if(mark >= 45)

division = “Second class”;

else if(mark >= 35)

division = “Third class”;

else

division = “Fail”;

iv) Nested-if statement

A nested if statement is an if statement placed inside another if statement as in the if

body or the else body. Nested if statements are often used when you must test a

combination of conditions before deciding on the proper action.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (19) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Example:

if (i == 10)

{

if (j < 20)

a = b;

}

else

{

a = d;

if(k > 100)

c = d;

else

a = c;

 }

b) Switch Statement

The switch statement in Java language is a multi-way branch statement. It tests the

value of a given variable (or expression) against a list of case values and when a match

is found, a block of statements associated with that case is executed. The switch

statement works with byte, short, int, long, enum types, char and String data. The

general form of switch statement is as follows:

switch (expression)

{

 case value-1:

 block-1

 break;

 case value-2:

 block-2

 break;

 ···

 ···

 [default:

 default-block

 break;]

}

The expression is evaluated once. Basically, the expression can be a int, byte,

short, char, or String data types. There can be one or n number of case values value-

1, value-2, …. for a switch statement. The case value must be of switch expression

type only. The case value must be literal or constant. It doesn't allow variables. The case

values must be unique. If case values are duplicates, it renders compile-time error. block-

1, block-2, ….. are statement lists and may contain zero or more statements.

Each case statement can have a break statement which is optional. When control

reaches to the break statement, it jumps the control after the switch statement. If a

break statement is not found, it executes the next case. The default is as optional

case. When present, it will be executed if the value of the expression does not match with

any of the case values.

When the switch is executed, the value of the expression is successively compared

against the values value-1, value-2, …. If a case is found whose value matches with the

value of the expression, then the block of statement that follows the case are executed.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (20) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Example :

int day;

switch (day)

{

 case 1:

 System.out.println("Monday");

 break;

 case 2:

 System.out.println("Tuesday");

 break;

 case 3:

 System.out.println("Wednesday");

 break;

 case 4:

 System.out.println("Thursday");

 break;

 case 5:

 System.out.println("Friday");

 break;

 case 6:

 System.out.println("Saturday");

 break;

 case 7:

 System.out.println("Sunday");

 break;

 default:

 System.out.println("Invalid day");

 break;

}

2) Iteration Statements

The process of repeatedly executing a block of statements is known as looping and

this can be done using iteration statements. The statements in the block may be executed any

number of times, from zero to infinite number. If a loop continues forever it is called an

infinite loop. The Java language provides following three iterative statements:

a) for statement

b) while statement

c) do statement

a) The for Statement

The for loop is an entry-controlled loop and provides a concise way of writing the loop

structure. The for loop is used to iterate a block of code several times. If the number of

iterations is fixed, it is recommended to use for loop. The for statement consumes the

initialization, condition and increment/decrement in one line thereby providing a shorter

and easy structure of looping. The syntax of the for loop is:

for {initialization; test condition; increment)

{

 Statement(s); //Body of the loop

}

The for loop consists of four parts:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (21) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

1. Initialization: It is the initialization of loop-control/counter variable. It is executed

only once when the loop starts. Here, we can initialize the variable, or we can use an

already initialized variable.

2. Test Condition: It is the condition which is executed each time to test the condition

of the loop. It continues execution until the condition is false. It must return boolean

value either true or false.

3. Increment/Decrement: It increments or decrements the control/counter variable

value. It is executed each time after the statement (body of loop) has been executed.

4. Statement: The statement(s) of the loop is executed each time until the condition is

false.

While executing the for statement, firstly the initialization of the loop-control/counter

variable is done. Then the value of the control variable is tested using the test condition. If

the condition is true, the body of the loop is executed. After execution of last statement in

the body of loop, the control is transferred back to the for statement. Now, the loop-

control/counter variable is incremented/decremented and the new value of the control

variable is again tested in the test condition. If the condition is true, the body of the loop

is again executed. This process continues till the value of the control variable fails to

satisfy the test condition. When the test condition becomes false, the loop is terminated

and the execution continues with the statement that immediately follows the loop.

Examples:

1) Consider the following segment of a program

for(x=0; x<=9; x++)

{

 System.out.println(x);

 }

 This for loop is executed 10 times and prints the digits 0 to 9 in one line.

2) Consider the following segment of a program

for(x=9; x>=0; x--)

 System.out.println(x);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9.

Note that, braces are optional when the body of the loop contains only one statement.

 Additional Features of for Loop

Java‟s additional feature of the for loop allows two or more variables to control for

loop, multiple statements can be included in both the initialization and increment

portions of the for statement. Each such use is separated by a comma. Example:

for(a=1,b=4; a<b; a++,b--)

{

System.out.println("a = " + a);

System.out.println("b = " + b);

}

b) The while Statement

The while loop is an entry-controlled loop statement. The while loop is used to iterate a

block of code several times. If the number of iterations is not fixed, it is recommended to

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (22) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

use while loop. It repeatedly execute a body of loop as long as the test condition is true.

As soon as the test condition becomes false, the loop automatically terminates. The

syntax of the while loop is:

while(test condition)

{

 Body of the loop

}

While executing the while statement, firstly the test condition is evaluated. If the

condition is true, the body of the loop is executed. After execution of last statement in the

body of loop, the control is transferred back to the while statement. Now, again the test

condition is evaluated. If the condition is satisfied, the body of the loop is again executed.

This process continues till the test condition is true. When the test condition becomes

false, the loop is terminated and the execution continues with the statement that

immediately follows the loop. For example:

sum = 0;

n = 1;

while(sum <= 50)

{

sum = sum + n;

n = n+1;

 }

System.out.println(“Sum = ” + sum);

The body of the loop is executed number of times for n = 1, 2, 3, ... till the sum becomes

50 or greater than 50.

c) The do Statement

The do-while loop is called an exit control loop. Therefore, unlike while loop and for

loop, the do-while check the condition at the end of loop body. The do-while loop is

used to iterate a block of code several times. If the number of iterations is not fixed and

wants to execute the body of the loop at least once, it is recommended to use do-while

loop. It repeatedly execute a body of loop as long as the test condition is true. As soon as

the test condition becomes false, the loop automatically terminates. The do-while loop is

executed at least once because condition is checked after loop body. The syntax of the

do-while loop is:

do

{

 body of the loop

}

while(test condition);

While executing the do-while statement, on reaching the do statement, the program

proceeds to evaluate the body of the loop first. At the end of the loop, the test condition in

the while statement is evaluated. If the condition is true, the program jumps back on do

statement and continues to evaluate the body of the loop once again. This process

repeatedly continues as long as the test condition is true. As soon as the test condition

becomes false, the loop will be terminated and the control goes to the next statement

immediately after the do-while statement.

Example:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (23) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

int n=1, sum=0;

do

{

sum = sum + n;

n = n+1;

 }

while (sum <= 50)

System.out.println(“Sum = ” + sum);

Command Line Argument

A Java application can accept any number of arguments from the command line. The Java

command-line argument is an argument i.e. passed at the time of running the Java

program from the console (i.e. command prompt) and it can be used as an input.

The command-line arguments are directly passes to the main() method. The string or

primitive data types such as int, double, float, char, etc can be passes as command-

line arguments. When the command-line arguments are passed, they are converted to

strings and stored in String array args[]. The arguments have to be passed as space-

separated values.

Example:

class Test

{

 public static void main(String args[])

 {

 System.out.println(args[0]);

 System.out.println(args[1]);

 System.out.println(args[2]);

 }

}

Consider the command line of above code:

 D:/DCPS> java Test 11 22 33

This command line contains four arguments, that are 11, 22, 33 and these values are

stored in an array args as follows:

11 args[0]

22 args[1]

33 args[2]

The individual elements of an array are accessed by using an index or subscript like

args[i]. The value of i denotes the position of the elements inside the array. For

example, args[2] denotes the third element. Output of the last program segment is:

 Output : 11 22 33

Arrays

An array is a group of homogeneous or related data items that share a common name. A

specific element in an array is accessed by its index or subscript. Arrays offer a

convenient means of grouping related information.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (24) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

In Java, array is an object of a dynamically generated class, which contains elements of a

similar data type. Any primitive values can be store in an array in Java. Also single

dimensional or multidimensional arrays can be created in Java. Array in Java is index-

based, the first element of the array is stored at the 0
th

 index, second element is stored on

1
st
 index and so on.

1) One-Dimensional Arrays

A list of items can be given one variable name using only one subscript and such a

variable is called a single-subscripted variable or a one-dimensional array. Like any

other variables, arrays must be declared and created in the computer memory before they

are used. Creation of an array involves three steps:

a) Declaration

b) Creation

c) Initialization

a) Declaration of One-Dimensional Arrays

 One-dimensional arrays in Java are declared in two forms as follows:

Form 1

type arrayname[];

Form 2

type[] arrayname;

An array declaration has two components: the type and the name. The type declares the

element type of the array. The element type determines the data type of each element that

comprises the array. The arrayname determines the name of array and it is any valid

identifier. Also note that the size of the array is not given in the declaration. For example:

 int counter[];

 float average[];

 int[] counter;

 float[] average;

Note that, above declarations declares the counter and average arrays, but no array

actually exists. In fact, the value of these arrays is set to null, which represents an array

with no value. To link these arrays with an actual, physical array of integer and float, user

must create these arrays.

b) Creation of One-Dimensional Arrays

After the array is declared, it must be created in memory. Creation of array gives required

memory locations to the array. Arrays are created using new operator, as below:

arrayname = new type[size];

Here, type specifies the data type of array, size specifies the number of elements in the

array, and arrayname is the name of the array that is declared in the declaration. The

elements in the array allocated by new will automatically be initialized to zero. Example:

 counter = new int[5];

 average = new float[10];

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (25) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

These lines create necessary memory locations for the arrays counter and average and

designate them as int and float respectively. Now, the variable counter refers to an

array of 5 integers and average refers to an array of 10 floating point values.

It is also possible to combine the two steps declaration and creation into single step:

 int counter[] = new int[5];

 float average[] = new float[10];

c) Initialization of One-Dimensional Arrays

The final step is to put values into the array created. This process is known as

initialization. This is done using the array subscripts as shown below:

arrayname[subscript] = value;

Examples:

 counter[0] = 11;

 counter[1] = 22;

 counter[4] = 55;

We can also initialize arrays automatically in the same way as the ordinary variables

when they are declared, us shown below:

type arrayname[] = {list of values};

The array initializer is a list of values separated by commas and surrounded by curly

braces. Note that no size is given. The compiler allocates enough space for all the

elements specified in the list. For example:

int counter[] = {35, 40, 20, 57, 19};

It is possible to assign an array object to another. For example:

int a[] = {1, 2, 3};

int b[];

b = a;

are valid in Java. Both the arrays will have the same values.

 Array Length

In Java, all arrays store the allocated size in a variable named length. This information

will be useful in the manipulation of arrays when their sizes are not known. The length of

the array Test can be obtain using Test.length. For example:

int TestSize = Test.length;

2) Two-Dimensional Arrays

Two-dimensional array in Java is the simplest form of multi-dimensional array. The

two-dimensional array can be defined as an array of arrays. The 2D array is organized as

matrices which can be represented as the collection of rows and columns and we can access

the record using both the row index (subscript) and column index (subscript).

a) Declaration of Two-Dimensional Arrays

Two-dimensional arrays in Java are declared as follows:

type arrayname[][];

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (26) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Here, type declares the data type of the array. The arrayname is any valid identifier.

Example:

 int myArray[][];

Above declarations declares the two-dimensional array myArray.

b) Creation of Two-Dimensional Arrays

Two-dimensional array is created as shown below:

arrayname = new type[row-size][column-size];

Here, type specifies the data type of array, row-size and column-size specifies the number

of elements in the array, and arrayname is the name of the array that is declared in the

declaration. For example:

 myArray = new int[2][3];

or
 int myArray[][] = new int[2][3];

This creates a two-dimensional array that can store 6 integer values, two rows and three

columns.

c) Initialization of Two-Dimensional Arrays

The final step is to put values into the array created. This process is known as

initialization. This is done as shown below:

type arrayname[][] = {list of values};

The initialization is done row by row. For example:

int myArray[][] = {1, 2, 3, 4, 5, 6};

This initializes first row as 1, 2, 3 and second row as 4, 5, 6. The above initialization

statement can be written as:

int myArray[][] = {{1, 2, 3}, {4, 5, 6}};

by surrounding the elements of each row by braces.

We can also initialize two-dimensional array in the form of matrix:

int myArray[][] = {

{1, 2, 3},

{4, 5, 6}

 };

■ ■ ■ ■ ■

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-IV : Java

 (27) PROF. V. V. AGARKAR

D. M. Burungale Science & Arts college, Shegaon

Sample Questions

1. Explain features of Java.

2. Describe structure of Java program with example.

3. Explain with example:

(i) Keyword (ii) Variable (iii) Literals

4. State and explain selection statements in Java.

5. Describe command line arguments with suitable example.

6. What are command line arguments? How are they useful?

7. What is one dimensional array? How to declare and initialize array? Explain with syntax.

8. What is an array? How is one dimensional declared, created and initialized in Java?

■ ■ ■ ■ ■

References:

1) The Complete Reference JAVA2 by Herbert Schildt (Tata McGraw)

2) The Complete Reference JAVA by Patrik Noughton

3) Programming with JAVA - A Primer: By E.Balguruswamy (Tata McGraw)

4) Programming in JAVA : By S. S. Khandare (S. Chand)

5) Teach Yourself 'Java' in 2 Hrs : By Sams

6) Java for You : By P. Koparkar

7) Internet

■ ■ ■ ■ ■

