

 Unit-V : Class & Inheritance

B. Sc. II (CBCS)
Semester-IV
2023-2024

PROF. V. V. AGARKAR
Assistant Professor & Head

Department of Computer Science

Shri. D. M. Burungale Science & Arts College, Shegaon, Dist. Buldana

COMPUTER
 SCIENCE

 2CS2 : RDBMS and Core Java

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (1) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Unit – V

Syllabus: Classes & OOPs: Class, Object, Method, Constructor: types,

this Keyword, Polymorphism: Overloading & Overriding, Inheritance:

types of inheritance, Super, Abstract class, Interfaces: Interface concept,

Defining, and Implementing of Interface, Using Final (variables, methods

and classes), Garbage Collection.

Introduction

Java is a true object-oriented language and therefore the underlying structure of all

Java programs is classes. Anything we wish to represent in a Java program must be

encapsulated in a class that defines the state and behaviour of the basic program components

known as objects. Classes create objects and objects use methods to communicate between

them.

Class

The class is at the core of Java. It is the logical construct upon which the entire Java

program is built because it defines the shape and nature of an object. Any concept you wish

to implement in a Java program must be encapsulated within a class.

A class defines a new (user defined) data type. Once defined, this new type can be

used to create objects of that type. Thus, a class is a template for an object, and an object is an

instance of a class.

Class represents the set of properties or methods that are common to all objects of that

class type. Classes provide a convenient method for packing together a group of logically

related data items and functions that work on them.

In Java, the data items are called fields or instance–variables and the functions are

called methods.

 Defining Class

When you define a class, you declare its exact form and nature. You do this by

specifying the data (called data fields or instance-variables) that it contains and the code

(called methods or member functions) that operates on that data. While very simple classes

may contain only code or only data, most of the classes contain both. The basic form of a

class definition is:

class classname [extends superclassname]

{

 [fields declaration;]

 [methods declaration;]

}

A class is declared by use of the class keyword. Classes usually consist of two things:

instance variables and methods. A more detailed form of class declaration is:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (2) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

class classname

{

type instance-variable1;

type instance-variable2;

..........

type instance-variableN;

type methodname1(parameter-list)

{

 // body of method

}

type methodname2(parameter-list)

{

 // body of method

}

...

type methodnameN(parameter-list)

{

 // body of method

}

}

Data and code that operates on the data are encapsulated in a class by placing data

fields and methods inside the body of the class definition. Collectively, the methods and

variables defined within a class are called members of the class. The data fields or variables

defined within a class are called instance variables because they are created whenever an

object of the class is instantiated. The instance variables can be declared exactly the same

way as that local variables are declared. Each instance of the class (i.e. each object of the

class) contains its own copy of these variables. Thus, the data for one object is separate and

unique from the data for another. Instance variables are also known as member variables.

 The code defined within a class is contained within methods. In most classes, the

instance variables are accessed by the methods defined for that class. Thus, as a general rule,

it is the methods that determine how a class data can be used.

Example-1:

Let us consider a simple class called Rectangle that defines two instance variables:

width and length. Here, Rectangle does not contain any methods.

class Rectangle

{

int length;

int width;

}

Above class defines a new type of data. In this case, the new data type is called

Rectangle. You will use this name to declare objects of type Rectangle. It is important to

remember that a class declaration only creates a template; it does not create an actual object.

Objects

When a class is created, actually a new data type is created. This new data type is

used to declare objects of that type. An object in Java is essentially a block of memory that

contains space to store all the instance variables.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (3) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

 Creating Objects

Creating an object is also referred to as instantiating an object. However, creating

objects of a class is a two-step process. First, you must declare a variable of the class type.

This variable does not define an object. Instead, it is simply a variable that can refer to an

object. Second, you must acquire an actual, physical copy of the object and assign it to that

variable. You can do this using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for an

object and returns a reference to it. This reference is the address in memory of the object

allocated by new. This reference is then stored in the variable. Thus, in Java, all class objects

must be dynamically allocated.

 Declaring objects

 Objects can be declared by using following syntax:

Classname objectname;

 This declares a variable to hold the object reference. It just creates a reference and it

does not point to an actual object.

Example-2:

1) Rectangle rect1;

2) Box mybox;

The first example declares rect1 as a reference to an object of type Rectangle and

second example declares mybox as a reference to an object of type Box.

After the execution of the statements in example 1 and 2, rect1 and mybox contains

the value null, which indicates that it does not yet point to an actual object. Any attempt to

use rect1 and mybox at this point will result in a compile-time error.

 Creating (or Instantiation) objects

 Objects can be created by using following syntax:

 Objectname = new Classname();

 Objects in Java are created using the new operator. The new operator creates an object

of the specified class and returns a reference to that object. This allocates an actual object and

assigns object reference to the variable.

Example-3:

1) rect1 = new Rectangle();

2) mybox = new Box();

After the execution of the statements in example 1 and 2, rect1 and mybox acquire an

actual, physical copy of the objects and assign it to the variables rect1 and mybox

respectively. After this, rect1 and mybox can be used as objects of Rectangle and Box

classes respectively.

 The statement of declaration and creation of objects can be combined into one

statement as follows:

 Classname Objectname = new Classname();

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (4) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Example-4:

The above Example-2 and 3 can be rewritten into a single statement as follows:

1) Rectangle rect1 = new Rectangle();

2) Box mybox = new Box();

It is noted that any number of object can be created for a class. Each object has its

own copy of the instance variables of its class. This means that any changes to the variables

of one object have no effect on the variables of another.

Example-5:

Rectangle rect1 = new Rectangle();

Rectangle rect2 = new Rectangle();

Rectangle rect3 = new Rectangle();

Methods

Methods must be added to the class for manipulation of the data contained in the

class. Methods are used to access the instance variables defined by the class. Methods are

declared inside the body of the class but immediately after the declaration of instance

variables. In addition to defining methods that provide access to data, you can also define

methods that are used internally by the class itself. General form of a method declaration is:

type methodname (parameter-list)

{

 method-body;

}

Method declarations have four basic parts:

 The name of the method (methodname)

 The type of the value the method returns (type)

 A list of parameters (parameter-list)

 The body of the method (method-body)

The type specifies the type of value returned by the method. This can be a simple data

type such as int as well as any class type. It can even be void type, if the method does not

return any value. The methodname is a valid identifier other than those already used by other

items within the current scope. The parameter-list is always enclosed in parentheses. This list

contains a sequence of data type and variable pairs separated by commas. Parameters are

essentially variables that receive the value of the arguments passed to the method when it is

called. If the method has no parameters, then the parameter list will be empty and retains

empty parenthesis. The body of the method actually describes the operations to be performed

on the data. Methods that have a return type other than void return a value to the calling

routine using the following form of the return statement:

return (value);

Here, value is the value returned.

Example-6:

Following are the examples of different method declarations.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (5) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

1) void getdata(int x, int y)

2) void getdata(int m, float y, float z)

3) void volume()

4) double volume()

5) int fact(int n)

In the first example getdata() function accepts two parameters x, and y of the type

int and return type is void that means it does not returns any value. In the second example

getdata() function accepts three parameters m, y and z of the type int, float and float

respectively and return type is void that means it does not returns any value. In the third

example volume()function accepts no parameter and return type is void that means it does

not returns any value. In the forth example volume()function accepts no parameter and

return type is double that means it returns a value of type double. And in the fifth example

fact()function accepts one parameter of type int and return type is int that means it

returns a value of type int.

Example-7:

 Let us consider the Rectangle class declared in Example-1 again and add a method

getData() to it to calculate area of the box as follows:

class Rectangle

{

int length;

int width;

void getData(int x, int y)

{

 length = x;

width = y;

}

}

Note that the method getData() has a return type of void because it does not return

any value. Two int values are passed to the method which are then assigned to the instance

variables length and width. The getData() method is basically added to provide values to

the instance variables.

Example-8:

Let us add one more method to the class Rectangle to compute the area of the

rectangle defined by the class. This can be done as follows:

class Rectangle

{

int length, width;

void getData(int x, int y)

{

 length = x;

width = y;

}

int rectArea()

{

 int area = length * width;

 return(area);

}

}

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (6) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

The new method rectArea() computes area of the rectangle and returns the result,

Since the result would be an integer, the return type of the method has been specified as int.

Also note that the parameter list is empty.

 Accessing Class Members

Once the objects are created, each object contains its own set of variables; values

should be assigned to these variables in order to use them in the program.

All variables must be assigned values before they are used. From outside the class, the

instance variables and the methods cannot access directly. To do this, the concerned object

and the dot operator (.) must be used as shown below:

Objectname.variablename = value;

objectname.methodname(parameter-list);

Here objectname is the name of the object, variablename is the name of the

instance variable inside the object that want to access, methodname is the method that want to

call, and parameter-list is a comma separated list of “actual values” that must match in

type and number with the parameter list of the method declared in the class. The instance

variables of the Rectangle class may be accessed and assigned values as follows:

rect1.length = 15;

rect1.width = 10;

rect2.1egth = 20;

rect2.width = 12;

This is one way of assigning values to the variables in the objects. Another way and

more convenient way of assigning values to the instance variables are to use a method that is,

declared inside the class.

Rectangle rect1 = new Rectangle(); // Creating an object

Rect1.getData(15, 10}; // Calling the method using the object

This code creates rect1 object and then passes in the values 15 and 10 for the x and y

parameters of the method getData. This method then assigns these values to length and

width variables respectively.

Recursion

 Recursion is the process of defining something in terms of itself. Java also supports

recursion. In Java, Recursion is a process in which a method calls itself directly or indirectly

repeatedly to solve a problem. Such method is called a recursive method. The recursion

provides a way to break complicated problems down into simple problems which are easier to

solve.

static void recurse()

{

 recurse();

}

Recursive
call

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (7) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Example-9:

 Following is recursive method factorial() which calculate factorial of n.

static int factorial(int n)

 {

 if (n == 0)

 return 1;

 else

 return(n * factorial(n-1));

 }

Constructors

A constructor is a special method used to initialize an object immediately upon

creation. It has the same name as the class name in which it resides and is syntactically

similar to method. Once it is defined, the constructor is automatically called immediately

after the object is created, and before the new operator is completed. Every time an object is

created using the new keyword, at least one constructor is called. The constructor never

returns any value, not even void.

class classname

{

 classname([parameters])

 {

 }

}

 Types of constructor in Java

There are two types of constructor in Java, which are

1. Default constructor

2. Parameterized constructor

1. Default constructor

A constructor that has no parameters is known as default constructor.

If we don‟t define any constructor in a class, the compiler automatically builds default

constructor for the class. It initializes the object with default values (e.g., null for

reference types, 0 for numeric types, false for Boolean). But, the compiler does not

produce a default constructor if we write default constructor or parameterized constructor.

Example-10:

class Rectangle

{

int length, width;

Rectangle() // Default constructor
{

 length = 10;

width = 20;

}

}

constructor

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (8) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Object creation statement for the default constructor as below:

Rectangle rect1 = new Rectangle(); // default constructor

2. Parameterized constructor

Parameterized constructor is a constructor that takes parameters. If you want to initialize

fields of the class with your own values, then use a parameterized constructor.

Example-11:

class Rectangle

{

int length, width;

Rectangle(int x, int y) // Parameterized constructor
{

 length = x;

width = y;

}

}

Object creation statement for the parameterized constructor as below:

 Rectangle rect1 = new Rectangle(10, 20); // parameterized constructor

 Overloading Constructors

Sometimes there is a need of initializing an object in different ways. Java allows to use

more than one constructor in the same class. This can be done using constructor

overloading. Constructor overloading is a technique in which a class can have more than

one constructor that differ in parameter list, in such a way so that each constructor

initializes an object in different ways.

Example-12:

Let us consider the Rectangle class with overloaded constructors:

class Rectangle

{

int length, width;

Rectangle()

{

 length = 25;

width = 40;

}

Rectangle(int x, int y)

{

 length = x;

width = y;

}

}

Here two constructors are used for class Rectangle. One is the default constructor

and another is parameterized constructor. Following statements creates objects of class:

Rectangle rect1 = new Rectangle(); // default constructor

Rectangle rect2 = new Rectangle(15, 10); // parameterized constructor

The rect1 object is created and initialized the instance variables length and width to

the default values 25 and 40 respectively. The rect2 object is created and initialized the

instance variables length and width to 15 and 10 respectively.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (9) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this,

Java defines the this keyword. The this keyword can be used inside any method to refer to the

current object. That is, this is always a reference to the object on which the method was

invoked. Thus the use of this anywhere a reference to an object of the current class.

Example-13:

Box(double w, double h, double d)

{

this.width = w;

this.height = h;

this.depth = d;

}

Inside the Box(), this will always refer to the invoking object. The this is also useful

in other contexts, one of which is explained in the following section.

Instance Variable Hiding

When a local variable has the same name as an instance variable, the local variable

hides the instance variable. This is why in example-13, width, height, and depth were not

used as the names of the parameters to the Box() constructor inside the Box class. If they had

been, then width would have referred to the formal parameter, hiding the instance variable

width. Because this lets you refer directly to the object, you can use it to resolve any name

space collisions that might occur between instance variables and local variables. For example,

the local variables have names width, height, and depth for parameter names and then use

this to access the instance variables by the same name.

Example-14:

Box(double width, double height, double depth)

{

this.width = width;

this.height = height;

this.depth = depth;

}

Polymorphism

Polymorphism is considered one of the important features of Object-Oriented

Programming. Polymorphism allows us to perform a single action in different ways. In other

words, polymorphism allows you to define one interface and have multiple implementations.

 Types of Java Polymorphism

In Java Polymorphism is mainly divided into two types:

1. Compile-time Polymorphism: It is also known as static polymorphism. Furthermore,

the call to the method is resolved at compile-time. This type of polymorphism is

achieved by Method Overloading.

2. Runtime Polymorphism: It is also known as Dynamic Binding or Dynamic Method

Dispatch. In this, the call to an overridden method is resolved dynamically at runtime

rather than at compile-time. This is achieved by Method Overriding.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (10) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Overloading Method

In Java it is possible to define two or more methods within the same class that share

the same name, but different parameter list and different definitions. Each parameter list

should be unique. Such methods are said to be overloaded, and the process is referred to as

method overloading. Method overloading is used, when objects are required to perform

similar tasks but using different input parameters. Method overloading is one of the ways that

Java supports polymorphism. Note that, the method‟s return type does not play any role in

method overloading.

When an overloaded method is invoked, Java uses the type and/or number of

arguments as its guide to determine which version of the overloaded method to actually call.

Thus, overloaded methods must differ in the type and/or number of their parameters. When

Java encounters a call to an overloaded method, it simply executes the version of the method

whose parameters match the arguments used in the call.

Example-15:

Here is a simple example that illustrates method overloading.

// Demonstrate method overloading.

class OverloadDemo

{

void test()

{

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a)

{

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b)

{

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a)

{

System.out.println("double a: " + a);

return a*a;

}

}

class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (11) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test(123.25): 15190.5625

In above example, test() is overloaded four times. The first version takes no

parameters, the second takes one integer parameter, and the third takes two integer

parameters and the fourth takes one double parameter and also returns a value.

When an overloaded method is called, Java looks for a match between the arguments

used to call the method and the method‟s parameters. However, this match need not always

be exact. In some cases, Java‟s automatic type conversions can play a role in overload

resolution.

Inheritance

In Java, it is possible to inherit attributes and methods from one class to another. This

is done using the concept called inheritance.

Inheritance is a mechanism in which one class acquires the properties (instance-

variables and methods) of another class. Inheritance is a mechanism of deriving new class

from an old class. The old class is known as the super class or base class or parent class and

the new one is called the subclass or derived class or child class. The inheritance allows

subclass to inherit all the variables and methods of their parent classes.

With inheritance, we can reuse the fields and methods of the existing class. Hence,

inheritance facilitates Reusability. So that a class has to write only the unique features and

rest of the common properties can be extended from another class.

 In the terminology of Java, a class that is inherited is called a superclass. The class

that does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a

superclass. It inherits all of the instance variables and methods defined by the superclass.

 In Java, to inherit from a class, use the extends keyword. Inheritance represents

the IS-A relationship which is also known as a parent-child relationship.

 A subclass is defined as follows:

class subclassname extends superclassname

{

 Instance-variables declaration;

 methods declaration;

}

The keyword extends signifies that the properties of the superclassname are extended

to subclassname. The subclass will now contain its own variables and methods as well those

that of superclass.

Different types of inheritance in Java

Inheritance may take different forms:

1) Single inheritance (only one super class)

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (12) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

2) Multilevel inheritance (Derived from a derived class)

3) Hierarchical inheritance (one super class, many subclasses)

4) Multiple inheritance (several super classes)

Java does not directly implement multiple inheritance. However, this concept is

implemented using a secondary inheritance path in the form of interfaces.

1) Single Inheritance

 A

 B

[Fig.: Single Inheritance]

When one subclass inherits the features of only one superclass, this type of

inheritance is called Single inheritance. In the example given below, the base class Room

will be inherited by a subclass BedRoom.

Example-16:

class Room

{

 int length;

int breadth;

 Room(int x, int y)

 {

 length = x;

breadth = y;

 }

 int area()

 {

 return (length * breadth);

 }

}

 class BedRoom extends Room // Inheriting Room

 {

 int height;

 BedRoom(int x, int y, int z)

 {

 super(x, y); //pass values to superclass
 height = z;

 }

 int volume()

 {

 return (length * breadth * height);

 }

}

Above program segment defines a class Room and extends it to another class

BedRoom. Note that the class BedRoom defines its own data members and methods. The

subclass BedRoom now includes three instance variables, namely, length, breadth, and

height and two methods, area and volume.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (13) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Subclass Constructor

A subclass constructor is used to construct the instance variables of both the subclass

and the superclass. The subclass constructor uses the keyword super to invoke the

constructor method of the superclass. The keyword super is used subject to the following

conditions:

 super may only be used within a subclass constructor method.

 The call to superclass constructor must appear as the first statement within the

subclass constructor

 The parameters in the super call must match the order and type of the instance

variable declared in the superclass.

2) Multilevel Inheritance

A common requirement in object-oriented programming is the use of a derived class

as a super class, Java supports this concept through the use of multilevel inheritance and uses

it extensively in building its class library. This concept allows us to build a chain of classes as

shown in Fig.

Grandfather A Superclass

Father B Intermediate superclass

Child C Subclass

[Fig,: Multilevel Inheritance]

The class A serves as a base class for the derived class B which in turn serves as a

base class for the derived class C. The chain ABC is known as inheritance path.

A derived class with multilevel base classes is declared as follows:

class A

{

}

 class B extends A // First Level
 {

}

 class C extends B // Second Level
 {

}

This process may be extended to any number of levels. The class C can inherit the

members of both A and B.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (14) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

3) Hierarchical Inheritance

One of the applications of inheritance is to use it as a support to the hierarchical

design of a program. In the case of Hierarchical Inheritance, there is one base class for

multiple subclasses. For the example given below, A is the base class that is inherited by

multiple subclasses B, C, and D.

 A

B C D

[Fig.: Hierarchical Inheritance]

Overriding Methods

If subclass (child class) has the same method as declared in the parent class, it is

known as method overriding in Java. That is a method in a subclass has the same name and

type signature as a method in its superclass. In other words, if a subclass provides the specific

implementation of the method that has been declared by one of its parent class, it is known as

method overriding.

When an overridden method is called from within a subclass, it will always refer to

the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden.

The main uses of method overriding are to provide the specific implementation of a

method which is already provided by its superclass and also used for runtime polymorphism.

Example-17:

Consider the following program segment that illustrates the concept of overriding.

The method getROI() is overridden.

class Bank

{

int getROI() // Method declared
 {

 return 0;

}

}

class SBI extends Bank

{

 int getROI() // Method Override
 {

 return 8;

 }

}

class AXIS extends Bank

{

 int getROI() // Method Override
 {

 return 9;

 }

}

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (15) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Abstract class

 Data abstraction is the process of hiding certain details and showing only essential

information to the user. Abstraction can be achieved with abstract classes. By using abstract

classes, a foundation is established for other classes to build upon, promoting code

reusability, data abstraction and inheritance.

A class which is declared with the abstract keyword is known as Abstract class. A

abstract class serves as a blueprint for other classes and can contain abstract methods

(methods without a body) and non-abstract methods (methods with a body). Abstract classes

in Java cannot be directly instantiated, which means you cannot create objects of an abstract

class. It is expected to be extended by other classes implementing its abstract methods. A

abstract class needs to be subclassed by another class to use its properties.

Abstract methods declared in a superclass are compulsorily override or use in

subclasses (otherwise you will get compilation error). The body is provided by the subclass

(inherited from). To declare an abstract method, use this general form:

abstract type name(parameter-list);

Example:

abstract class Shape

{

 abstract void draw();

}

class Rectangle extends Shape

{

 void draw()

 {

 System.out.println(“drawing rectangle”);

 }

}

class Circle1 extends Shape

{

 void draw()

 {

 System.out.println(“drawing circle”);

 }

}

Interfaces

In Java, an interface specifies the behavior of a class by providing an abstract type. It

is one of the core concepts in Java and is used to achieve abstraction, polymorphism and

multiple inheritances.

Interface looks like a class but it is not a class. A Java interface can contains only

abstract methods (method without body) and static constant variables. In other words,

interface fields are public, static and final by default, and the methods are public and abstract.

An Interface cannot contain a constructor methods and also it cannot be instantiated.

Java class cannot be a subclass of more than one superclass, but java class can

implement more than one interface, thus support the concept of multiple inheritance through

interfaces. Once interface is defined, any number of classes can implement an interface. Also,

one class can implement any number of interfaces.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (16) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

 Defining Interface

 The syntax for defining an interface is very similar to that for defining a class:

interface interfaceName

{

 variables declaration;

 methods declaration;

}

Here, interface is the key word and interfaceName is any valid Java identifier.

Note that, all variables are declared as constants. Methods declaration will contain only a list

of methods without a body statements as shown below:

return-type methodName(parameter_list);

Example:-

interface MotorBike

{

 int speed=50;

 public void totalDistance();

}

Note that the code for the method is not included in the interface and the class that

implements this interface must define the code for the method.

 Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.

To implement an interface, include the implements keyword (instead of extends keyword)

in a class definition, and then create the methods defined by the interface. That is, the class

which implements the interface needs to provide complete body for the methods declared in

the interface. The general form of a class that includes the implements clause looks like this:

class classname implements interface[,interface,...]

{

 Body of class

}

If a class implements more than one interface, the interfaces are separated with a

comma. The methods that implement an interface must be declared public. Also, the type

signature of the implementing method must match exactly the type signature specified in the

interface definition. To implement an interface, a class must create the complete set of

methods defined by the interface.

Example:

public class TwoWheeler implements MotorBike

{

 int totalDistance;

 public void totalDistance()

 {

 totalDistance = speed*150;

 System.out.println(“Distance Travelled:” + totalDistance);

 }

}

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (17) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Using Final (variables, methods and classes)

All methods and variables can be overridden by default in subclasses. If we wish to

prevent the subclasses from overriding the members of the superclass, we can declare them as

final using the keyword final as a modifier.

In java final is a keyword or reserved word and can be applied to variables, methods,

classes etc. The reason behind final keyword is to make entity non modifiable. It means when

you make a variable or class or method as final you are not allowed to change that variable or

class or method.

The final keyword in java is used to give restriction to the user. The java final

keyword can be used in many contexts, as:

 final variable To create constant variables

 final method Prevent Method overriding

 final class Prevent Inheritance

Final variables

A variable can be declared as final. Any variable which is declared by using the final

keyword is called final variable. Final variables are treated as constant and prevent its

contents from being modified. Final variables must be initialized when it is declared. This

means that a final variable can only be explicitly assigned once. Example:

final int SIZE = 100;

final int hours = 24;

Blank final variable

A final variable that is not initialized at the time of declaration is known as blank

final variable. The blank final variable must be initialized in constructor of the class

otherwise it will throw a compilation error. Example:

class Demo

{

// Blank final variable

 final int MAX_VALUE;

 Demo()

{

 //It must be initialized in constructor

 MAX_VALUE=100;

 }

}

Final methods

Method overriding is one of Java‟s most powerful features, but sometimes it is

required to prevent a subclass to overriding a method from superclass. To disallow a method

from being overridden, specify final as a modifier at the start of its declaration in a

superclass. A method with final keyword is called final method. Final methods cannot be

overridden. A sub class can call the final method of super class, but it cannot override it.

The final methods are faster than non-final methods because they are not required to

be resolved during run-time and they are bonded on compile time. The main reason behind

making a method final would be that the content of the method should not be changed by any

outsider. Any attempt to override the final method will result in compilation error.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (18) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

Example :

class Base

{

 final void display()

 {

 System.out.println("Base method called");

 }

}

class Derived extends Base

{

 void display() //cannot override

 {

 System.out.println("Base method called");

 }

}

Final classes

When a class is declared with final keyword, it is known as final class in java. A final

class cannot be extended (inherited). The main purpose or reason of using a final class is to

prevent inheritance as final classes cannot be extended. If a class is marked as final then no

class can inherit any feature from the final class.

Example :-

final class X

{

 //properties and methods of class X

}

class Y extends X

{

 //properties and methods of class Y

}

Any attempt to inherit these classes will cause an error and the compiler will not allow it.

Compiler Error: cannot inherit from final X

Garbage Collection

In java, garbage means unreferenced objects. Garbage collection is process of

reclaiming the runtime unused memory automatically. In other words, it is a way to destroy

the unused objects. Unlike C and C++, in java garbage collection is performed automatically.

So, java provides better memory management.

Garbage collection in Java is an automatic memory management process that frees up

memory occupied by objects that are no longer referenced or in use by the program. In Java,

developers don‟t explicitly deallocate memory; instead, the Java Virtual Machine (JVM)

handles this task through its garbage collection mechanism.

The overview of garbage collection works in Java is as follows:

1. Allocation: When you create objects in Java using the „new‟ keyword, memory is

allocated for those objects on the heap.

2. Reference tracking: Java keeps track of references to objects. An object becomes

eligible for garbage collection when it is no longer reachable by any live thread or

chain of references.

https://www.geeksforgeeks.org/inheritance-in-java/

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-V : Classes & OOPs

 (19) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts college, Shegaon

3. Mark and Sweep: The most common garbage collection algorithm used in Java is

the Mark and Sweep algorithm. Here‟s how it works:

a) Mark phase: The garbage collector traverses all reachable objects starting from

the roots (which typically include local variables, static variables, and active

threads) and marks them as live.

b) Sweep phase: The garbage collector sweeps through the heap and deallocates

memory for objects that were not marked as live, effectively reclaiming that

memory.

4. Compact: Some garbage collectors in Java also perform memory compaction after

reclaiming memory. Compaction involves moving live objects together to eliminate

fragmented memory spaces, which can improve memory usage and performance.

Java provides different garbage collection implementations, including:

 Serial Garbage Collector

 Parallel Garbage Collector

 Concurrent Mark-Sweep (CMS) Garbage Collector

 Garbage-First (G1) Garbage Collector

The choice of garbage collector depends on factors such as application requirements,

available memory, and performance considerations. In recent versions of Java, the Garbage-

First (G1) garbage collector has become the default for most applications due to its ability to

provide better overall performance and scalability.

Developers can also tune garbage collection behavior by adjusting JVM options such

as heap size, garbage collection algorithm, and collection frequency.

Overall, garbage collection in Java simplifies memory management for developers by

automating memory deallocation, reducing the risk of memory leaks and segmentation faults,

and allowing them to focus more on application logic.

■ ■ ■ ■ ■

References:

1) The Complete Reference JAVA2 by Herbert Schildt (Tata McGraw)

2) The Complete Reference JAVA by Patrik Noughton

3) Programming with JAVA - A Primer : By E. Balguruswamy (Tata McGraw)

4) Programming in JAVA : By S. S. Khandare (S. Chand)

5) Teach Yourself Java in 2 Hrs : By Sams.

6) Java for You : By P. Koparkar

■ ■ ■ ■ ■

