

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (1) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

UNIT – III

Syllabus: Sorting and Searching: Definition and concept. Searching

Techniques: Linear Search, Binary Search and Indexed Sequential Search.

Sorting Techniques: Bubble Sort, Selection Sort, Insertion Sort, Radix Sort,

Merge Sort and Quick Sort.

Searching

Searching is the process of looking one piece of data that has been stored within a

whole group of data. Basically a search algorithm is an algorithm which accepts an argument

‘a’ and tries to find the corresponding data where the match of ‘a’ occurs in a file or in a

table. Following are different types of searching techniques:

1. Linear or Sequential Search

The simplest of all the searching techniques is Linear or Sequential Search. As the name

suggests, the expected element is searched sequentially in the list, one by one, from the

first element to last element until a match occurs.

Linear search is not the most efficient way to search, however, it is very simple to

implement. Linear search can be applied on sorted or unsorted linear data structure.

Example :-

1] Search 44 in the list : 55, 11, 33, 44, 22

55 Element to element comparisons

11

33 44

44

22
End of search.

 Search successful, 44 found.

2] Search 77 in the list : 55, 11, 33, 44, 22

55 Element to element comparisons

11

33 77

44

22
End of search.

 Search unsuccessful, 77 not found.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (2) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Algorithm for linear search is as follows:

Algorithm

LINEAR-SEARCH(A, N, ITEM)

Here A is an array with N elements. This algorithm

searches the element ITEM in array A.

1. [Initialize]

 Set FLAG := 1.

2. Repeat step 3 For K = 1 to N

3. IF A[K] = ITEM Then

 Set FLAG := 0

 PRINT “Search is successful” and

 Element is found at location K.

 Exit.

 End If

 4. If FLAG = 1 Then

 PRINT “Search is unsuccessful”.

 End If

5. Exit.

2. Binary Search

This search is applicable only to ordered or sorted lists (ascending or descending data).

In binary search, first selects the middle element in the list and compares its value to that

of the key value. Because, the list is sorted, if the key value is less than the middle value

then the key must be in the first half of the list. Likewise, if the value of the key item is

greater than that of the middle value in the list, then key lies in the second half of the list.

Now, knowing that key must be in one half of the array or the other, the binary search

examines the mid value of the half in which the key must reside. The algorithm thus

narrows the search area by half at each step until it has either found the key data or the

search fails.

Example :-

 Consider the array of 7 elements and search 23 in the array.

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (3) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Low High

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

1. The element 12 and 31 are at positions low and high, respectively.

2. Calculate mid value, which is as

Mid = (low+high)/2

 = (0+6)/2

 = 3

Therefore, A[3] =19 is a middle element.

Low High

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

3. The key value 23 is compared with mid element i.e. 19. The key value 23 is greater

than 19, so key is on the right half. Hence, low = mid+1 = 3+1 = 4.

 Low High

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

4. Calculate mid value of the second half, which is as

Mid = (low+high)/2

 = (4+6)/2

 = 5

Therefore, A[5]=27 is a middle element.

 Low High

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

5. The key value 23 is compared with mid element i.e. 27. The key value 23 is less than

27, so key is on the left half. Hence, high = mid-1 = 5-1 = 4.

Low

High

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

12 14 16 19 23 27 31

mid

mid

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (4) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

6. Calculate mid value, which is as

Mid = (low+high)/2

 = (4+4)/2

 = 4

Therefore, A[4]=23 is a middle element.

7. The key value 23 is compared with mid element i.e. 23. The key value 23 is equal to

mid value 23, so key is found at position 4. Search successful.

Algorithm

BINARY-SEARCH(A, N, ITEM)

Here A is an array with N elements. This algorithm

searches the element ITEM in array A. Here low is a

low bound and high is a high bound of an array.

 1. [Initialize]

 Set FLAG := 1

 Set low := 0 and

Set high := n-1.

 2. Repeat while (low <= high)

mid = (low + high)/2

If ITEM = A[mid] Then

PRINT “record is found at position”, mid+1

Set FLAG := 0

EXIT.

Else

If ITEM < A[mid] then

high = mid–1.

Else

low = mid+1.

End if

End if

3. If FLAG = 1 Then

 PRINT “Search is unsuccessful”.

 End If

4. EXIT.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (5) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

3. Indexed Sequential Search

Indexed Sequential Search is a searching algorithm used to find a particular element

in a list or array. It’s a linear search method, which means it sequentially checks each element

of the list until a match is found or the end of the list is reached.

However, unlike a simple sequential search where you start from the beginning and

check each element one by one, indexed sequential search involves creating an index

structure that contains references to elements at certain intervals. This index structure helps in

reducing the number of comparisons required to find an element.

Working of Indexed Sequential Search:

1. Create an index for the list or array. This index typically consists of references to

elements at certain intervals. For example, if you have an array of 100 elements, you

might create an index containing references to elements at every 10th position (index

0, index 10, index 20, and so on).

2. Search the index to determine the rough location of the element you're searching for.

For instance, if you're looking for element X and the index tells you it should be

between index 20 and index 30, you know you need to search only that portion of the

list.

3. Perform a sequential search within the determined range. Start from the lower bound

of the range and check each element sequentially until you find the desired element or

reach the upper bound of the range.

Indexed sequential search can be more efficient than a simple sequential search,

especially for large lists, because it reduces the number of comparisons required to find an

element. However, constructing and maintaining the index may add overhead, particularly if

the list is frequently modified. Additionally, the effectiveness of indexed sequential search

depends on the distribution of data within the list and the chosen interval for the index.

[Fig. : Indexed Sequential Search]

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (6) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Sorting

Sorting refers to the operation of arranging data in some given order, such as increasing

or decreasing, with numerical data, or alphabetically, with character data.

Let A be a list of n elements A1, A2, A3, …, An in memory. Sorting A refers to the

rearranging the contents of A so that they are increasing in order, that is so that:

A1 ≤ A2 ≤ A3 ≤ . . . ≤ An

For example, suppose an array DATA contains 8 elements as follows:

DATA: 77, 33, 44, 11, 88, 22, 66, 55

After sorting, DATA must appear in memory as follows:

DATA: 11, 22, 33, 44, 55, 66, 77, 88

Following are some sorting algorithms:

1. Bubble sort 4. Radix sort

2. Selection sort 5. Merge sort

3. Insertion sort 6. Quick sort

1. Bubble Sort

In bubble sort algorithm, multiple swapping take place in one pass to move or ‘bubble’

up the greater element to the last of the list.

In this method, two successive elements are compared & swapping is done if the first

element is greater than the second element. This process is carried on till the list is

sorted.

Example :-

Let us consider the elements 9, 5, 1, 4, and 3 for sorting under bubble sort. Following

illustrates the bubble sort:

[Fig : Bubble Sort]

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (7) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

1. In pass1, first element 9 is compared with its next element 5. The first element 9 is

greater than its next element 5. Hence it is swapped. Now again 9 is compared with

next element 1. The next element 1 is smaller than 9 hence swapping is done. The

same procedure is repeated with the 4 and 3 and at last the list as 5, 1, 4, 3, 9 after

first pass. After the first pass the largest element 9 is bubbled up and it is fixed at the

top of the list.

2. In pass 2, the elements of pass 1 are compared. The first element 5 is compared with

its next element 1. The elements 5 and 1 are swapped because first element 5 is

greater than 1. Next, 5 is compared with element 4. Again, 5 and 4 are swapped.

The process is repeated until all successive elements are compared and if necessary

swapped. The final list at the end of this pass is 1, 4, 3, 5, 9. After the second pass

the largest elements 9 and 5 are fixed at the top of the list.

3. In pass 3, the first element 1 is compared with the next element 4. The element 1 is

smaller than 4 and hence no swapping is done. Next, 4 is compared with 3 and

swapping is done. The final list at the end of this pass is 1, 3, 4, 5, 9. After the third

pass the largest elements 9, 5, and 4 are fixed at the top of the list.

4. In pass 4, the first element 1 is compared with the next element 4. The element 1 is

smaller than 4 and hence no swapping is done. At last, the sorted list obtained is 1,

3, 4, 5, 9.

Following is an algorithm for bubble sorting:

Algorithm

 BUBBLE-SORT(DATA, N)

Here DATA is an array with N elements. This algorithm

sorts the elements in DATA.

1. Repeat Steps 2 and 3 for I = 1 to N-1.

2. Set J := 1. [Initializes pass pointer]

3. Repeat while J <= N – I

 (a) If DATA[J] > DATA[J+1] then

 Interchange DATA[J] and DATA[J+1].

 [End of If structure]

 (b) Set J := J+1.

 [End of step 3 inner loop]

 [End of step 1 outer loop]

4. Exit.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (8) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

2. Insertion Sort

Insertion sort is well suited for sorting small data sets or for the insertion of new

elements into a sorted sequence. In insertion sort the element is inserted at appropriate

place. In insertion sort greater numbers are shifted towards the end of the array and

smaller are to beginning.

Example :- Let us consider the elements 9, 5, 1, 4, and 3 for sorting under insertion

sort. Following Fig. illustrates the insertion sort:

[Fig. : Insertion Sort]

 Here initial list is: 9 5 1 4 3

 In the first pass second element 5 is compared with first element 9. Element 5 is less

than 9 and therefore it is inserted before 9 i.e. 9 is shifted at second place and at first

place 5 is inserted.

After first pass list is: 5 9 1 4 3

 In the second pass third element 1 is compared with its predecessors 5 & 9, and

elements 5, 9, and 1 are placed appropriately.

After second pass list is: 1 5 9 4 3

 In the third pass forth element 4 is compared with its predecessors 1, 5 & 9, and

elements 1, 5, 9, and 4 are placed appropriately.

After third pass list is: 1 4 5 9 3

 In the forth pass last element 3 is compared with its predecessors 1, 4, 5 & 9, and

elements 1, 4, 5, 9, and 3 are placed appropriately.

Sorted list is: 1 3 4 5 9

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (9) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Algorithm

INSERTION(A, N)

Here A is an array with N elements. This algorithm sorts

the elements in array A.

1. Repeat Steps 2 to 4 for K = 2 to N.

2. Set TEMP := A[K] and

 Set PTR := K – 1.

3. Repeat while TEMP < A[PTR]

 (a) Set A[PTR+1] := A[PTR] [Moves elements forward]

 (b) Set PTR := PTR-1.

 [End of loop]

4. Set A[PTR+1] := TEMP [Returns element in proper place]

 [End of step 1 loop]

5. Exit.

3. Selection Sort

Selection sort first find the smallest element in the list and exchange it with the element

in the first position, then find the second smallest element and exchange it with the

element in the second position, and continue in this way until the entire list is sorted.

Example :- Consider the elements 9, 5, 1, 4, and 3 for sorting under selection sort

method. Following Fig. illustrates selection sort:

[Fig. : Selection Sort]

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (10) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

1. In pass 1, select first position element 9 and find smallest element in list. The smallest

element is 1 at position 3; hence swap 9 and 1, so 1 is placed at first position.

2. In pass 2, select second position element 5 and find second smallest element in list.

The second smallest element is 3 at fifth position; hence swap 5 and 3, so 3 is placed

at second position.

3. In pass 3, select third position element 9 and find third smallest element in list. The

third smallest element is 4 at fourth position; hence swap 9 and 4, so 4 is placed at

third position.

4. In pass 4, select fourth position element 9 and find fourth smallest element in list. The

fourth smallest element is 5 at fifth position; hence swap 9 and 5, so 5 is placed at

fourth position.

5. In last pass the element 9 is placed at last position because it is height element in list.

Algorithm

SELECT(A, N, MIN, LOC)

Here A is an array with N elements. This algorithm sorts

the elements in array A.

1. Repeat Steps 2 to 4 for K = 1 to N-1.

2. Set MIN := A[K] and

 Set LOC := K.

3. Repeat For J = K+1, K+2,..., N

 IF MIN > A[J] Then

 Set MIN := A[J] and

 Set LOC := J.

 End If

 [End of step 3 loop]

4. Set TEMP := A[K] and

 Set A[K] := A[LOC]and

 Set A[LOC] := TEMP.

 [End of step 1 loop]

5. Exit.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (11) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

4. Merge Sort

Merge sort is one of the most efficient sorting algorithms. It works on the principle of

Divide and Conquer. Merge sort repeatedly break down a list into several sublists until

each sublist consists of a single element and merging those sublists in a manner that

results into a sorted list.

Merging of two lists done as follows:

The first element of both lists is compared. If sorting in ascending order, the smaller

element among two becomes a new element of the sorted list. This procedure is

repeated until both the smaller sublists are empty and the newly combined sublist

covers all the elements of both the sublists.

Example :

Suppose A is the following list of 14 numbers:

Each pass of the merge-sort algorithm will start at the beginning of the array A and merge

pairs of sorted subarrays as follows:

Pass 1: Merge each pair of elements to obtain the following list of sorted pairs:

Pass 2: Merge each pair of pairs to obtain the following list of sorted quadruplet:

Pass 3: Merge each pair of sorted quadruplet to obtain the following two sorted suharrays:

Pass 4: Merge the two sorted subarrays to obtain the single sorted array

The original array A is now sorted.

5. Quick Sort

The quicksort algorithm uses a recursive "divide-and-conquer" approach. The elements

to be sorted are partitioned into two subarrays such that all the elements in the "left"

subarray are less than or equal to all the elements in the "right" subarray. The subarrays

themselves are then recursively partitioned, until we get down to subarrays containing

just a single element (which can't be further partitioned). Once all the recursive

invocations reach the base case of a single-element subarray, the entire array is sorted.

Recall that partitioning is accomplished by choosing a pivot value, and repeatedly

swapping elements such that the left subarray contains only values that are <= the pivot,

and the right subarray contains only values that are >= the pivot.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (12) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Quicksort is popular because it is not difficult to implement, works well for a variety of

different kinds of input data, and is substantially faster than any other sorting methods.

A quick sort first selects a value, which is called the pivot value. The role of the pivot

value is to assist with splitting the list. The actual position where the pivot value belongs

in the final sorted list, commonly called the split point, will be used to divide the list for

subsequent calls to the quick sort. Although, there are many different ways to choose the

pivot value like: choose first element as pivot or choose last element as pivot or choose

median of array as pivot or choose random element as pivot.

The three steps of Quicksort are as follows:

Divide:

Rearrange the elements and split the array into two subarrays and an element in

between such that each element in the left subarray is less than or equal the

middle element and each element in the right subarray is greater than the middle

element.

Conquer:

Recursively sort the two subarrays.

Combine:

Combine all the sublist together to get sorted list.

Example :

Suppose A is the following list of 12 numbers:

First step is to find pivot value, so here first number in the list 44 is chosen as pivot value.

Beginning with the last number. 66, scan the list from right to left, comparing each number

with 44 and stopping at the first number less than 44. The number is 22. Interchange 44 and

22 to obtain the list.

Beginning with 22, next scan the list in the opposite direction, from left to right, comparing

each number with 44 and stopping at the first number greater than 44. The number is 55.

Interchange 44 and 55 to obtain the list.

Beginning this time with 55, now scan the list in the original direction, from right to left,

until meeting the first number less than 44. It is 40. Interchange 44 and 40 to obtain the list.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (13) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Beginning with 40, scan the list from left to right. The first number greater than 44 is 77.

Interchange 44 and 77 to obtain the list

Beginning with 77, scan the list from right to left seeking a number less than 44. We do not

meet such it before meeting 44. This means all numbers have been scanned and compared

with 44. Furthermore, all numbers less than 44 now form the sublist of numbers to the left

of 44, and all numbers greater than 44 now form the sublist of numbers to the right of 44, as

shown below:

Thus 44 is correctly placed in its final position, and the task of suiting the original list A

has now been reduced to the task of sorting each of the above sublists.

The above reduction step is repeated with First sublist and Second sublist and further it

is repeated with each sublist containing 2 or more elements.

Hence after all sublist are processed by above procedure recursively, the sorted list will

obtained as follows:

11 22 33 40 44 55 60 66 77 88 90 99

6. Radix Sort

Radix sort is a non-comparative sorting algorithm that sorts numbers by processing

individual digits of the numbers from the least significant digit (rightmost) to the most

significant digit (leftmost). It can be applied to integers, where each integer is treated as a

string of digits. Radix sort operates by distributing elements into buckets based on the value

of the current digit being examined, and then collecting them back in order. It can also be

applied to strings, treating each string as a sequence of characters.

 Radix Sort Algorithm

The detailed steps are as follows −

Step 1 − Check whether all the input elements have same number of digits. If not, check

for numbers that have maximum number of digits in the list and add leading

zeroes to the ones that do not.

Step 2 − Take the least significant digit of each element.

Step 3 − Sort these digits and change the order of elements based on the output achieved.

Step 4 − Repeat the Step 2 for the next least significant digits until all the digits in the

elements are sorted.

Step 5 − The final list of elements achieved after k
th

 loop is the sorted output.

B. Sc. I (Semester II) CBCS 1CS2 “Data Structure and OOPS”

COMPUTER SCIENCE (2023-24) UNIT III: Searching & Sorting

 (14) Prof. V. V. AGARKAR
D.M.Burungale Science & Arts College, Shegaon

Example:

The Input list is:

[170, 45, 75, 90, 802, 24, 2, 66]

Step 1: Find the largest element in the array, which is 802. It has three digits, so we will

iterate three times, once for each significant place. Also leading zeros are added to make all

the numbers 3 digit long.

170, 045, 075, 090, 802, 024, 002, 066

Step 2: Starting from the rightmost (unit) digit, sort the numbers based on the unit digits:

170, 090, 802, 002, 024, 045, 075, 066

Step 3: Sort the elements based on the tens place digits.

802, 002, 024, 045, 066, 170, 075, 090

Step 4: Sort the elements based on the hundreds place digits.

002, 024, 045, 066, 075, 090, 170, 802

Step 5: The array is now sorted in ascending order.

The final sorted array using radix sort is:

[2, 24, 45, 66, 75, 90, 170, 802]

