

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(1) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

UNIT – III

Syllabus: PL/SQL: Features and block structure, variables and constant, data

types, Identifiers, Operators and expression, Conditional statement, iterative

statement. Cursor: Concepts of cursor, types of cursor, declaring, opening,

using cursors, fetching data, closing a cursor, cursor attributes, Handling

Exceptions, Creating Procedures, Creating Function, Triggers: Create

Triggers, Types of Triggers, Creating BEFORE and AFTER Triggers,

INSTEAD-OF triggers, Inserting, Updating and Deleting Triggers.

Introduction

SQL is a very flexible, powerful and easy to learn language. However SQL is a

non-procedural language i.e. it does not contain any programming constructs. Hence

cannot be used as an application development tool. To use programming constructs with

SQL, Oracle provides PL/SQL.

PL/SQL

The PL/SQL programming language was developed by Oracle Corporation in the

late 1980s as procedural extension language for SQL and the Oracle relational database.

PL/SQL basically stands for “Procedural Language extensions to SQL”. This is the

extension of Structured Query Language (SQL) that is used in Oracle. Unlike SQL,

PL/SQL allows the programmer to write code in procedural format. It combines the data

manipulation power of SQL with the processing power of procedural language to create a

super powerful SQL queries. It allows the programmers to instruct the compiler 'what to

do' through SQL and 'how to do' through its procedural way. Similar to other database

languages, it gives more control to the programmers by the use of loops, conditions and

object oriented concepts.

Advantages of PL/SQL

1. PL/SQL is development tool that not only supports SQL data manipulation but also

provides facilities of conditional checking, branching and looping.

2. PL/SQL sends an entire block of statements to the Oracle engine one at a time. The

communication between the program and the Oracle engine reduces. This in turn

reduces network traffic.

3. PL/SQL allows declaration and use of variables in blocks of code. These variables

can be used to store intermediate results of a query for later processing or calculate

values.

4. All PL/SQL codes are portable to any operating system and platform on which

Oracle runs. Hence, PL/SQL code blocks written for a DOS version of Oracle will

run on its UNIX version, without any modifications at all.

5. Disk I/O is reduced because related functions and procedures are stored together.

6. Errors are easily detected and handled. It also facilitates displaying user friendly

messages when errors are encountered.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(2) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Features of PL/SQL

Some of the features of PL/SQL are as follows:

1. Variables and constants: Variables and constants can be defined in PL/SQL.

2. Procedural Capabilities: PL/SQL provides control structures to control the flow

of a program. The control structures supported by PL/SQL are IF..THEN, LOOP,

FOR..LOOP and Others.

3. Exception Handling: PL/SQL allows errors, called exceptions, to be detected and

handled. Pre-defined and user-defined error can be handled in PL/SQL. To handle

these errors, user can write the code in the form of Exception handlers in PL/SQL.

4. Cursor: PL/SQL supports row by row processing using the cursor.

5. Modularity: PL/SQL allows process to be divided into different modules,

subprograms called procedures, functions and packages.

6. Better performance: PL/SQL block is sent as one unit to Oracle server. Without

PL/SQL each SQL command is sent to Oracle server, which will increase network

traffic heavily. As a collection of SQL statements is passed as a block to Oracle

Server, it improves performance.

7. Portability: Applications written in PL/SQL are portable to any platform on which

Oracle runs without any changes.

PL/SQL Block (Anonymous Block)

 PL/SQL is a block-structured language. The units that constitute a PL/SQL

program are logical blocks. A PL/SQL program may contain one or more blocks (called

sub-blocks). Each block may be divided into three sections. The variables are declared

before they are used. The following are the different sections of a PL/SQL block:

1. The Declare section

2. The Execution Begin section

3. The optional Exception section, and

4. The End section

A PL/SQL block can be diagrammatically represented as follows:

[Declare

 … Declarations]

Begin

 … Statements

[Exception

 … Error Handlers]

End;

[Fig. 1: PL/SQL BLOCK STRUCTURE]

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(3) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

The sections of PL/SQL Block are explained as follows:

 The Declare Section:

The declaration section contains the declaration of variables and constants used in

the executable section of the block. If you don’t need to declare a variable, you can

omit this section. This section also declares cursors and user-defined exceptions that

are referenced in the other block sections.

 The Executable (Begin) Section:

The executable section is a compulsory section in the PL/SQL block. This section

begins with the keyword BEGIN. All the executable statements are given in this

section. Actual data manipulation, retrieval, looping and branching constructs are

specified in this section.

 The Exception Section:

The exception section is an optional section, which has executable statements to

handle an exception or error that arise during execution of the statements.

 The End Section:

The End section makes the end of a PL/SQL Block.

 Each statement or declaration in a PL/SQL block is terminated with a

semicolon. A statement may be broken down into multiple lines for

readability, and the semicolon marks the end of the statement. More than one

statement can appear in one line, separated by a semicolon.

Identifiers

Identifiers are the names given to PL/SQL elements, like tables, cursors or variables.

 Identifiers can be up to 30 characters in length.

 Must start with a letter.

 Then can have any combination of letters, numbers, $, #, _ .

operators

PL/ SQL provide the following types of operators:

Arithmetic operators : +, -, *, /, **

Relational operators : =, <> 0r != or ~=, >, >=, <, <=

Comparison operators : LIKE, BETWEEN, IN, IS NULL

Logical operators : AND, OR, NOT

Expression operators : :=, .., ││

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(4) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Variables

Variables are memory locations, which can store data values. As the program runs,

the contents of the variables can and do change. Information from the database can be

assigned to a variable, or the contents of the variable can be inserted into the database.

Variable are declared in the declarative section of the block. The general syntax for

declaring a variable is:

VariableName [CONSTANT] datatype [:= value];

Where VariableName is the name of the variable, datatype is the data type and

value is initial value of the variable.

Example:

The following is an example of variables being defined:

1. roll_no number(3);

2. seatnumber number(5) := 25000;

 Assigning values to variables

You can assign values to variables by two ways:

1. Using the assignment operator (:=)

For Example, name := ‘Ram’;

 roll_no := ‘555’;

 total := cps + mth + etc;

 age := &age;

2. Selecting or fetching a table data values into variables. For this a SELECT

statement is used. The following selects a value into the variable named r_n.

r_n number(3);

select roll_no into r_n from student

where name := ‘Ram’;

There can be only one variable declaration per line in the declaration section. The

following section is invalid, since two variables are declared in the same line.

v_fname, v_lname varchar2(10);

Constant

A constant is similar to a variable, but its value cannot be changed inside the

program. The value to a constant must be assigned when the constant is defined. Its

declaration is the same as a variable declaration, but the keyword CONSTANT and

initial value is included.

Examples :-

1. i_tax constant number(5) := 2000;

2. counter constant number(3) := 100;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(5) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Variable and Constant Attributes

Each PL/SQL variable and constant has attributes associated with it. These attributes

are properties of the variable or constant that you can reference. Following are the

attributes:

1. %type

PL/SQL can use this attribute to declare variables based on definitions on previously

defined variables or columns in a table. Hence, if a column’s attribute changes, the

variable’s attribute will change as well.

%type declares a variable or constant to have the same data type as that of a

previously defined variable or of a column in a table. When referencing a table, you

may name the table and column separated by dot (.).

Examples:

1. FirstName varchar2(10);

LastName FirstName%type;

In this example, the variable LastName is declared with the same data

type (size also) as is defined for the FirstName variable.

2. v_name student.name%type

In this example, the variable v_name is declared with the same data type

as is defined for the column name in the student table.

2. %rowtype

This attributes describes a record type that represents a row in the table. The

%rowtype attribute can be applied to a database table. It will return the type of a

PL/SQL record consisting of all the columns in the table, in the order in which they

were specified at table creation.

Example:

1. The following example creates a record named stud_rec that has fields with the

same name and data type the columns that appear in the table student.

stud_rec student%rowtype;

Now use the dot notation to access any field in the rowtype record. The next

statement assigns the field roll_no to the variable r_no:

r_no := stud_rec.roll_no;

PL/SQL Data types

To handle various types of information efficiently and conveniently, data types are

used to represent data. PL/SQL variables and constants have data types. The datatype

specifies a storage format, constraint, and a valid range of values. The PL/SQL provides

variety of predefined datatypes, which can be divided into four categories.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(6) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

 Scalar Represents a single value with no internal components.

 Composite It is a collection of internal components that can be accessed

individually.

 Reference It is a pointer that points to another data item.

 Large Object

(LOB)

Pointers to large objects that are stored separately from other

data items, such as text, graphic images, video clips, and sound

waveforms.

The following are the datatypes in various categories:

Scalar NUMBER, CHAR, VARCHAR2, DATE, BOOLEAN

Composite RECORD, TABLE, VAARAY

Reference REF CURSOR, REF Object_type

Large Object (LOB) BFLE, BLOB, CLOB, and NCLOB

Note :- there may be minor differences between PL/SQL datatypes and SQL

datatypes though they have the same name.

1. Scalar Datatypes

Scalar datatypes have no internal components. Scalar types do not have any

components within the types and contain a single value. Scalar datatypes are similar to

SQL datatypes. Following are some scalar datatypes:

i) CHAR(size)

The CHAR data type is used to store character strings of fixed length. If a value that

is inserted in a field of CHAR data type is shorter than the size is defined for it, then

it will be padded (fill) with spaces on the right until it reaches the size characters in

length. The maximum number of characters this data type can hold is 255 characters

(i.e. size is 255 bytes in Oracle 7 and 2000 bytes in Oracle 8, 9i, 10g, and 11g).

ii) VARCHAR2(size)

The VARCHAR2 data type is used to store character strings of a variable length. If

a value that is inserted in a field of VARCHAR2 data type is shorter than the size it

is defined for, then it will not be padded with spaces. The maximum this data type

can hold is 2000 characters (i.e. size is 2000 bytes in Oracle 7 and 4000 bytes in

Oracle 8, 9i, 10g, and 11g).

iii) NUMBER(P, S)

This data type is used to store negative, positive, integer, fixed-decimal and floating

point numbers. When a NUMBER data type used its precision (P) and scale (S) can

be specified. The precision P is a positive integer that indicates the total number of

digits in the number, both to the left and to the right of the decimal point. The scale S

is a total number of digits to the right of the decimal point. The precision P can range

from 1 to 38.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(7) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

iv) INTEGER or INT

The INTEGER data type accepts a 32-bit signed integer value with an implied scale

of zero. It stores any integer value between the range 2
-31

 and 2
31

-1. Attempting to

assign values outside this range causes an error.

v) FLOAT(p)

The FLOAT data type accepts a single or double precision floating point number

value, for which you may define a precision up to a maximum of 64. If no precision

is specified during the declaration, the default precision is 64. Attempting to assign a

value lager than the declared precision will cause an error to be raised.

vi) DATE

The DATE data type is used to represent dates. The DATE data type accepts date

values, consisting of year, month, and day. No parameters are required when

declaring a DATE data type. Date values should be specified in the form: DD-

MMM-YY.

vii) BOOLEAN

The BOOLEAN data type stores logical values that are used in logical operations.

The logical values are the Boolean values TRUE and FALSE and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore, Boolean

values cannot be used in: SQL statements, Built-in SQL functions (such as

TO_CHAR).

2. Composite Datatypes

Composite datatypes have internal components you can manipulate. A composite

type consists of more than one component within it. A variable of a composite type

contains one or more scalar variables. The composite datatypes available in PL/SQL are

RECORD and TABLE.

i) Table

A PL/SQL table is a one-dimensional, unbounded, sparse collection of homogeneous

elements, indexed by integers. In technical terms, it is like an array. After tables are

defined, they can be reused.

ii) Record

Records in PL/SQL programs are very similar in concept and structure to the rows of

a database table. The record as a whole does not have value of its own; instead, each

individual component or field has a value. The record gives you a way to store and

access these values as a group.

3. Large Object (LOB) Data Types

Large object (LOB) data types refer large to data items such as text, graphic

images, video clips, and sound waveforms. LOB data types allow efficient, random,

piecewise access to this data. Following are the predefined PL/SQL LOB data types:

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(8) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Data Type Description Size

BFILE Used to store large binary objects in

operating system files outside the

database.

System-dependent. Cannot

exceed 4 gigabytes (GB).

BLOB Used to store large binary objects in

the database.

8 to 128 terabytes (TB)

CLOB Used to store large blocks of

character data in the database.

8 to 128 TB

NCLOB Used to store large blocks of

NCHAR data in the database.

8 to 128 TB

Comments

Comments promote program readability and understanding. Comments are for

people, not computers. Oracle ignores comments. They are there simply for your benefit.

There are two types of comments:

 Single Line comment

Single line comment begins with the double hyphen (--). This comment indicator

can be begun anywhere on a line and continued to the end of that line. Example:

part_name varchar2(10); -- define part name

-- begin main processing

 Multi Line comment

Multi line comment indicator begins with /* and terminates with */. This comment

can span multiple lines. A multiline comment is shown in following example:

/* This PL/SQL block is used to find the

factorial of given number. */

Control Structures

A PL/SQL block has a series of SQL and PL/SQL statements. The execution will

start from the first statement and will sequentially continue to the last statement. In certain

situations you would like to control the flow of execution of statements like:

 execute a set of statements conditionally

 execute a set of statements repetitively

 branch execution to some other statement

PL/SQL has a variety of control structures that allow to control the behavior of the

block as it runs. These control structures include conditional, iterative, sequential and

unconditional control structures.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(9) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

 Conditional Controls

Conditional statements check the validity of a condition and accordingly execute a
set of statements.

1. IF–THEN Statement

The simplest form of the conditional statement is if-then statement. The syntax for

the if-then statement is:

Syntax:

IF condition THEN

 Statement(s);

END IF;

First the condition is evaluated, if the condition evaluates to true, statement(s) will

be executed. If the condition evaluates to false, the statement(s) are not processed

and are passed over.

Example :-

 IF sal >= 25000 THEN

 i_tax := sal*3/100;

 END IF;

2. IF–THEN–ELSE Statement

 The IF-THEN-ELSE statement executes a sequence of statements conditionally.

The IF clause checks a condition, the THEN clause defines what to do if the

condition is true and the ELSE clause defines what to do if the condition is false.

Syntax:

IF condition THEN

Statement1(s);

ELSE

Statement2(s);

END IF;

First the condition is evaluated, if the condition evaluates to true, statement1(s) will

be executed and statement2(s) will not executed. If the condition evaluates to false,

the statement2(s) will be executed and statement1(s) will not executed.

Example :-

 IF age >= 18 THEN

 dbms_output.put_line(‘Eligible to vote’);

 ELSE

 dbms_output.put_line(‘Not Eligible to vote’);

 END IF;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(10) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

3. IF–THEN–ELSIF Statement

With a normal If Statement you can only check one condition, but at times you will

want to check for multiple conditions. This can be done with IF-THEN-ELSIF.

It allows you to continually nest statements using ElsIf. To use ElsIf, you need to

separate each new case with the keyword ElsIf (one word), closing the condition as

normally with End If.

Syntax:

IF condition-1 THEN

 Statement(s)-1;

ELSIF condition-2 THEN

 Statement(s)-2;

...

ELSIF condition-n THEN

 Statement(s)-n;

ELSE

 Statement-else(s);

END IF;

This statement woks like this, “first the condition-1 is evaluated, if it is true,

statement(s)-1 is executed and the execution jumps down to the ending statement

(End If) and continues with the next line of code. If condition-1 is false, then it

evaluates condition-2. If it is true, statement(s)-2 is executed and the execution

jumps down to the ending statement (End If) and continues with the next line of

code. If condition-2 is false, then it evaluates condition-3 and so on. If all the ElsIf

conditions evaluate to false, then else statement(s) is executed.

Example :-

 IF per >= 60 THEN

 class := ‘First class’;

 ELSIF per >= 45 THEN

 class := ‘Second class’;

 ELSIF per >= 35 THEN

 class := ‘Third class’;

 ELSE

 class := ‘Fail’;

 END IF;

4. CASE Statement

The CASE statement is an alternative to the IF-THEN-ELSIF statement. The CASE

statement begins with keyword CASE and ends with keywords END CASE. The body

of the CASE statement contains WHEN clauses, with values or conditions, and action

statements. When a WHEN clause’s value/condition evaluates to TRUE, its action

statements are executed. The CASE statement can be either simple or searched.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(11) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

a) Simple CASE statement

A simple CASE statement evaluates a single expression and compares the result

with some values. It has the following syntax:

CASE selector

 WHEN selector_value_1 THEN statements_1

 WHEN selector_value_2 THEN statements_2

 ...

 WHEN selector_value_n THEN statements_n

 ELSE else_statements

END CASE;

The selector is an expression (typically a single variable). Each

selector_value can be either a literal or an expression. The simple CASE

statement runs the first statements for which selector_value equals

selector. Remaining conditions are not evaluated. If no selector_value

equals selector, the CASE statement runs else_statements if they exist.

Example:

DECLARE

 grade CHAR(1);

BEGIN

 grade := 'B';

 CASE grade

 WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');

 WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');

 WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');

 WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');

 WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');

 ELSE DBMS_OUTPUT.PUT_LINE('No such grade');

 END CASE;

END;

Result of above program segment is:

Very Good

b) Searched CASE Statement

The searched CASE statement evaluates multiple Boolean expressions and

executes the sequence of statements associated with the first condition that

evaluates to TRUE. It has the following syntax:

CASE

 WHEN condition_1 THEN statements_1

 WHEN condition_2 THEN statements_2

 ...

 WHEN condition_n THEN statements_n

 ELSE else_statements

END CASE;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(12) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

The searched CASE statement runs the first statements for which condition is

true. Remaining conditions are not evaluated. If no condition evaluates to

TRUE, the else_statements in the ELSE clause executes.

Example:

DECLARE

 grade CHAR(1);

BEGIN

 grade := 'B';

 CASE

 WHEN grade = 'A' THEN

 DBMS_OUTPUT.PUT_LINE('Excellent');

 WHEN grade = 'B' THEN

DBMS_OUTPUT.PUT_LINE('Very Good');

 WHEN grade = 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');

 WHEN grade = 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');

 WHEN grade = 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');

 ELSE DBMS_OUTPUT.PUT_LINE('No such grade');

 END CASE;

END;

Result of above program segment is:

Very Good

 Functional difference between CASE and SEARCHED CASE statements

 The simple CASE performs a simple equality check of "n" against each of the

"when" options.

 The searched CASE evaluates the conditions independently under each of the

"when" options. With this structure, far more complex conditions can be

implemented with a searched CASE than a simple CASE.

 A searched CASE can combine multiple tests using several columns, comparisons

and AND/OR operators.

 Note that in both simple and searched CASE constructs, the conditions are

evaluated sequentially from top to bottom, and execution exits after the first match

are found. So, suppose more than one condition is true, only the first action is

considered.

 Iterative Controls

Iterative control statements are used to execute a set of statements repetitively. The
iterative control statements supported by PL/SQL are follows:

1. LOOP

2. WHILE LOOP

3. FOR LOOP

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(13) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

1. LOOP Statement

It is the simplest form of iterative statement and has syntax:

Syntax:

LOOP

 Statement(s);

END LOOP;

The LOOP does not facilitate a checking for a condition and so it is an endless loop,

it executes the statement(s) in the loop body infinite number of times. To end the

iterations, the EXIT statement can be used.

Example:

LOOP

total := total + 1;

IF total >= 100 THEN

EXIT;

END IF;

END LOOP;

OR

LOOP

total := total + 1;

EXIT WHEN total >= 100;

END LOOP;

The statement total:=total+1 will be executed repeatedly until the condition given in

IF..THEN evaluates to TRUE.

2. FOR Loop Statement

The FOR loop uses when the number of iterations is known in advance. The FOR-

LOOP statement lets you specify a range of integers, then execute a sequence of

statements once for each integer in the range.

Syntax:

FOR loop_counter IN [REVERSE] low_bound .. high_bound

LOOP

 Statement(s);

END LOOP;

Where, loop_counter is the implicitly declared variable so do not have to declare it.

The low_bound and high_bound specify the starting and final values of a loop that

decides the number of iterations, and statements are the contents of the loop. The

low_bound and high_bound values can be literals, variables, or expressions, but

they must evaluate to integers. The REVERSE keyword is optional. Without this

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(14) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

keyword, the loop counter increases by one with every iteration through the loop,

from the lower to the upper bound. With REVERSE, the loop will decrease by one

instead, going from the upper to the lower bound. The two dots (..) is a special

operator that means “visit all the integers between lower_bound and upper_bound”.

PL/SQL will increment or decrement the loop index only by 1.

After the each iteration loop_counter is automatically incremented. The body of the

loop is evaluated once. These determine the total number of iterations. Loop_counter

will take on the values ranging from low_bound to high_bound, incrementing by 1

each time, until the loop is complete.

Examples:

1. FOR temp IN 1 .. 50

 LOOP

 dbms_output.put_line(temp);

 END LOOP;

 This loop will increment temp from 1 to 50.

2. FOR temp IN REVERSE 1 .. 50

 LOOP

 dbms_output.put_line(temp);

 END LOOP;

 This loop will decrement temp from 50 down to 1.

3. WHILE Loop Statement

The WHILE loop uses when the number of iterations is not known in advance. The

test for the loop execution takes place before the loop takes place so it is possible

that the loop will not be executed. The syntax is:

Syntax:

WHILE condition

LOOP

 Statement(s);

END LOOP;

Before the each iteration of the loop, the condition is evaluated. If the condition is

true, the statements are executed. If the condition is false or null, the loop is

bypassed and control passes to the next statement after the END LOOP statement.

Example:

WHILE counter <= 50

LOOP

 dbms_output.put_line(counter);

 counter := counter + 1;

END LOOP;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(15) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

 Unconditional Controls

1. GOTO statement

A GOTO statement transfers the control to a label unconditionally. When GOTO

statement is encountered, the control immediately passes to the statement that

follows the label. The syntax of the GOTO statement is:

Syntax:

GOTO label;

Where, label is a label defined in the PL/SQL block. Labels are defined by double

angle brackets. For example, <<labelname>>.

Example:

 In the following example, the GOTO statement is used to transfer the control to the

label new_part.

 IF AGE > 18 THEN

 GOTO new_part;

 END IF;

 ...

 <<new_part>>

 …

 …

CURSORS

Don’t write this in your answer

One of the most important functions of a database is to retrieve the data

stored in the tables. For this SELECT..INTO query is provided in PL/SQL. But

there is problem with the SELECT..INTO statement, if it returns more than one

row from database. Then it generates an exception (error) of TOO_MANY_ROWS.

The variables in PL/SQL are designed to accommodate one instance of data

item. If you need to pull back multiple rows of data from the database and work at

a time, you need to use cursors. In cursors, multiple rows that match the query are

available to the user, but only one at a time. You define the query first and then

scroll through the results and perform whatever processing you need.

Concept of Cursors

Cursors are the constructs that enable the user to name the private memory area to

hold the specific statement for access at a later time. Cursors are used to process

query results. The number of rows returned by the query may be zero, one or many

depending on query search criteria. Oracle provides the cursors as the mechanism to

be used to easily process these multiple row result sets one at time. Without cursors,

the Oracle developer will have to explicitly fetch and manage each individual row

that is selected by the cursor query.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(16) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

The multiple rows returned from the query are called the “Active Set”. PL/SQL

defines its size as the number of rows that have met your query search criteria and

formed the active set. Following figure-(2) illustrates a cursor that is holding

multiple rows. In every cursor there is a pointer that keeps the track of current row

being accessed, which enables your program to process the rows one at a time.

Query:

 SELECT EMPNO, ENAME, PAY FROM EMP

 WHERE DEPTNO = 1;

 1629 nanda 3000

 9028 gupta 7000

Cursor 8421 noel 2500 Current Row

 8342 james 20000

 1969 kapoor 15000

[Fig.2 : A Multiple Row Cursor]

Types of Cursors

Cursors are classified depending on the circumstances under which they are opened.

There are two types of cursors: Implicit and Explicit.

1. Implicit Cursors

If the Oracle engine for its internal processing has opened a cursor, it is known as an

‘Implicit Cursor’. Implicit cursors are declared by PL/SQL for all DML statements

and for single row queries. A system have its own cursor is called Implicit Cursor,

which is executed when SQL statement is used.

2. Explicit Cursors

A user can define a cursor for processing data as required. Such user–defined cursors

are known as ‘Explicit Cursors’. Explicit cursors are declared in PL/SQL program

according to our requirement using variables in PL/SQL block. It allows only queries

and multiple rows to be processed from the query.

 Processing Explicit Cursors

Following are the steps to create and use the Cursor:

1. Declare the cursor

2. Open the cursor

3. Fetch the data into the cursor

4. Close the cursor

The cursor declaration is the only step that goes in the declarative section of a block.

The other three steps are found in the executable or exception section.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(17) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

1. Declaring a Cursor

A cursor must be declared before it is used by PL/SQL. An explicit cursor is defined

in the declaration section of a PL/SQL block. Declaring the cursor accomplishes two

goals:

 It names the cursor

 It associates a query with the cursor

The syntax for declaring the cursor is:

CURSOR CursorName IS SELECT_Statement;

Where, CursorName is the name of the cursor. The name assigns to a cursor is an

undeclared identifier, not a PL/SQL variable. Values cannot be assigned to a

CursorName or cannot use it in an expression. Select_statement is the query

that defines the set of rows to be processed by the cursor.

Examples:

1. In the following example, a cursor named C_EMP is declared.

 CURSOR C_EMP IS

 SELECT * FROM EMP;

Above, cursor C_EMP is declared and contains all the columns of table EMP.

2. CURSOR C1_EMP IS

SELECT ENAME, DEPT_NO, PAY FROM EMP

WHERE PAY >= 5000;

2. Opening a Cursor

Opening a cursor executes the query and creates the active set that contains all rows,

which meet the query search criteria. When the OPEN command is executed, the

cursor identifies only the rows that satisfy the query. The rows are not actually

retrieved until the cursor fetch is issued. The syntax for opening a cursor is:

OPEN CursorName;

Where, CursorName identifies a cursor that has previously been declared. An

OPEN statement retrieves records from the database table and places the records in

the cursor. When a cursor is opened, the following things happen:

 The active set is determined.

 The active set pointer is set to the first row.

Example:

OPEN C_EMP;

The above statement opens the cursor C_EMP and sets a pointer to first record in the

active set.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(18) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

3. Fetching the data from the cursor

The FETCH statement is used to retrieve a row (current row) from the active set, one

at a time, into the PL/SQL variables. Each time FETCH is executed, it moves one

row from active set into the memory variables and also advances the cursor pointer

to the next row in the Active set. The FETCH statement’s has syntax:

Syntax:

FETCH CursorName INTO List_Of_Variables;

OR

FETCH CursorName INTO PL/SQL_Record;

Where, CursorName identifies a previously declared and opened cursor,

List_of_Variables is a comma separated list of previously declared PL/SQL

variables and PL/SQL_record is a previously declared PL/SQL record variable.

For each column value returned by the cursor query, there must be a corresponding

variable in the INTO list of FETCH statement. In either cases, the variables in the

INTO clause must be type compatible with the SELECT list of query.

The FETCH statement is placed inside a loop, which causes the data to be fetched

into the memory variables and processed until all the rows in the active data set are

processed. The fetch then exits. The exiting of the FETCH loop is user controlled.

Examples:

1. FETCH C_EMP INTO ENO, ENAM, SAL;

2. BEGIN

 OPEN C1_EMP;

 LOOP

 FETCH C1_EMP INTO ENO, ENAM, SAL;

 EXIT WHEN C1_EMP%NOTFOUND;

 END LOOP;

 END;

In the above examples ENO, ENAM, SAL are previously defined variables.

4. Closing the Cursor

When all records of the active set have been retrieved, the cursor should be closed.

When the cursor is closed, it release all the resources associated to the cursor. These

resources include the memory occupied by the cursor and the active set. Once a

cursor is closed, fetching from it will yield the error. The CLOSE statement is used to

close the cursor. The syntax for closing cursor is:

Syntax:

CLOSE CursorName;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(19) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Where, CursorName is a previously opened cursor’s name.

Example:

1. CLOSE C_EMP;

Cursor Attributes

Each defined cursor has four attributes. These attributes can be accessed to obtain

useful information about the cursor. These cursor attributes are as follows:

1. %ISOPEN

This attribute evaluate to TRUE, if an explicit cursor is open; or to FALSE, if it is

closed. The syntax for accessing this attribute is:

CursorName%ISOPEN

Example:

The following example checks whether the cursor named C_CURSOR is open or

not. If it’s already open, the fetch is executed. If the cursor is closed, the OPEN

cursor command is used.

 IF C_CURSOR%ISOPEN THEN

 FETCH C_CURSOR INTO A, B;

 ELSE

 OPEN C_CURSOR;

 END IF;

2. %FOUND

This attribute evaluate TRUE, if the last fetch succeeded because a row was

available to fetch; or to FALSE, if the last fetch failed because no more rows are

available. The syntax for accessing this attribute is:

CursorName%FOUND

Example:

The following example uses the %FOUND attribute to control the execution of the

INSERT command.

 LOOP

 FETCH C_CURSOR INTO A, B;

 IF C_CURSOR%FOUND THEN

 INSERT INTO MASTER VALUES(A, B);

 ELSE

 EXIT;

 END IF;

 END LOOP;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(20) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

3. %NOTFOUND

It evaluates to TRUE, if the last fetch is failed because no more rows were

available; or to FALSE, if the last fetch returned a row. (It is the logical opposite of

%FOUND.) The syntax for accessing this attribute is:

CursorName%NOTFOUND

Example:

The following example uses the %NOTFOUND attribute to exit a loop when there

are no more rows to process.

 LOOP

 FETCH C_CURSOR INTO A, B;

 EXIT WHEN C_CURSOR%NOTFOUND;

 END LOOP;

4. %ROWCOUNT

This attribute returns the number of rows fetched from the active set. It is set to

zero when the cursor is opened. The syntax for accessing this attribute is:

CursorName%ROWCOUNT

Example:

The following example uses %ROWCOUNT to halt execution after the first 100

rows have been processed.

 LOOP

 FETCH C_CURSOR INTO A, B;

 EXIT WHEN C_CURSOR%ROWCOUNT > 100;

 END LOOP;

Cursor FOR Loop

To use explicit cursor requires explicit processing of the cursor. This is done via the

OPEN, FETCH, and CLOSE cursor statements. PL/SQL provides a short cut to this,

via the cursor FOR loop, which implicitly handles the cursor processing.

The cursor FOR loop automatically does the following:

1. Implicitly declares its loop index as a %rowtype record.

2. Opens a cursor.

3. Fetches the row from the cursor for the each loop iteration.

4. Closes the cursor when all the rows have been processed.

The following is syntax of a cursor FOR LOOP:

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(21) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

FOR memory_variable IN cursor_name

LOOP

 Statement(s);

END LOOP;

Where, memory_variable is an undeclared identifier. It is automatically created and

defined as the %rowtype of the cursor. Each record in the opened cursor becomes a

value for the memory_variable of the %rowtype. Cursor_name is a name of an

opened cursor.

The FOR ensures that a row from the cursor is loaded in the declared

memory_variable and the loop executes once. This goes on until all the rows of the

cursor have been loaded into the memory variable. When all the rows from the active

set are completely fetched, the cursor is closed automatically at the end of the loop.

Example:

DECLARE

 CURSOR emp_cur IS

 SELECT * FROM emp WHERE deptno = 1;

BEGIN

 ...

 FOR v_emp_cur IN emp_cur

 LOOP

 dbms_output.put_line(v_emp_cur);

 END LOOP;

 ...

END;

Handling Exceptions

Exceptions are runtime errors or unexpected events that occur during the execution

of a PL/SQL code block and that disrupts the normal flow of program instructions.

PL/SQL provides the Exception block to handle the exceptions. The basic structure of

how exception handling works in PL/SQL is as follows:

DECLARE

 -- Declare variables

BEGIN

 -- Main block of PL/SQL code

EXCEPTION

 -- Exception handling block

 WHEN <exception_name> THEN

 -- Code to handle the specific exception

 WHEN OTHERS THEN

 -- Code to handle any other exception

END;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(22) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

In the above syntax:

 EXCEPTION: This marks the beginning of the exception handling block. Inside this

block, you can handle specific exceptions or catch any other unhandled exceptions.

 WHEN <exception_name> THEN: This is a specific exception handler where you

can catch a particular exception by name. You can have multiple WHEN clauses to

handle different exceptions.

 WHEN OTHERS THEN: This is a catch-all handler that catches any exception not

caught by the specific exception handlers.

 Types of exceptions in PL/SQL:

In PL/SQL, exceptions can be broadly categorized into three types:

1. System-Defined Exceptions

These are predefined exceptions provided by PL/SQL. They cover common errors

such as division by zero, invalid cursor operation, and others. Some common system-

defined exceptions include:

NO_DATA_FOUND Raised when a SELECT INTO statement returns no rows.

TOO_MANY_ROWS Raised when a SELECT INTO statement returns more than

one row.

ZERO_DIVIDE Raised when attempting to divide by zero.

INVALID_CURSOR Raised when attempting operations on an invalid cursor.

CURSOR_ALREADY_OPEN Raised when attempting to open a cursor that is already

open.

LOGIN_DENIED Raised when login to Oracle database fails due to invalid

username/password.

Example:

DECLARE

 -- Declare variables

BEGIN

 -- Main block of PL/SQL code

EXCEPTION

 WHEN VALUE_ERROR THEN

 DBMS_OUTPUT.PUT_LINE(‘Value Error occurred’);

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE(‘An unexpected error occurred’);

END;

2. User-Defined Exceptions

These are exceptions defined by the user. Users can define their own exceptions to

handle specific conditions in their application logic. User-defined exceptions are declared

in the declaration section of PL/SQL blocks.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(23) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Example:

DECLARE

 my_exception EXCEPTION;

BEGIN

 IF condition THEN

 RAISE my_exception;

 END IF;

EXCEPTION

 WHEN my_exception THEN

 -- Handle the user-defined exception

END;

Creating Procedures

 A PL/SQL procedure (stored procedure) is a named block that performs a specific

task. Procedures are standalone blocks of a program that can be stored. Each procedure in

PL/SQL has its own unique name by which it can be referred to and called. A procedure

may or may not return a value.

Creating procedures involves defining a set of SQL and procedural statements to

perform a specific task or set of tasks. The basic syntax to create procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter1 [IN | OUT | IN OUT] datatype [, ...])]

IS

 -- Declaration section (optional)

 variable_declarations;

BEGIN

 -- Executable section

 Procedure body

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows the modification of an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN

represents the value that will be passed from outside and OUT represents the

parameter that will be used to return a value outside of the procedure.

 procedure-body contains the executable part, it contains one or more PL/SQL

statements that define the logic of the procedure.

 END statement: Every PL/SQL block (including procedures) ends with the END

keyword followed by the name of the procedure.

Example:- Following procedure is created to insert values in STUDENT table:

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(24) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

create or replace procedure INSERTSTUDENT

 (id IN NUMBER, name IN VARCHAR2)

is

begin

 insert into student values(id, name);

end;

/

Creating Function

The PL/SQL function is very similar to PL/SQL procedure. The main difference

between procedure and a function is that, a function must always return a value and a

procedure may or may not return a value. Except this, all the other things of PL/SQL

procedure are true for PL/SQL function too. Following is syntax to create function:

CREATE [OR REPLACE] FUNCTION function_name

 [(parameter [, parameter])]

RETURN return_datatype

IS|AS

 [declaration_section]

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [function_name];

 Where, the function_name specifies the name of the function. The [OR

REPLACE] option allows modifying an existing function. The optional parameter list

contains name, mode and types of the parameters. The function must contain a return

statement. The RETURN clause specifies that data type you are going to return from the

function. The AS keyword is used instead of the IS keyword for creating a standalone

function.

Example :

create function adder(n1 in number, n2 in number)

return number

is

n3 number(8);

begin

n3 :=n1+n2;

return n3;

end;

/

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(25) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Database Trigger

In PL/SQL, triggers are named blocks of code that are automatically executed (or

“triggered”) in response to specific events occurring in a database. These events can

include DML statements such as INSERT, UPDATE, or DELETE, as well as DDL

statements like CREATE, ALTER, or DROP.

Triggers are useful for enforcing data integrity constraints, auditing changes to

data, implementing complex business rules, and automating repetitive tasks within the

database. Triggers could be defined on the table, view, schema, or database.

Types of Triggers

Triggers can be classified based on the following parameters.

 Classification based on the timing

o BEFORE Trigger: It fires before the specified event has occurred. Before triggers

are commonly used to check the validity of the data before the action is performed.

o AFTER Trigger: It fires after the specified event has occurred. For example, If

after trigger is associated with INSERT command then it is fired after the row is

inserted into the table.

 Classification based on the level

o STATEMENT level Trigger: A statement trigger is fired only once for a DML

statement irrespective of the number of rows affected by the statement. Statement-

level trigger is the default type of trigger.

o ROW level Trigger: A row trigger is fired once for each row that is affected by

DML command. For example, if an UPDATE command updates 100 rows then

row-level trigger is fired 100 times whereas a statement-level trigger is fired only

for once. Row-level trigger are used to check for the validity of the data.

Creating a Trigger

CREATE TRIGGER command is used to create a trigger. The syntax is as follows:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER}

INSERT OR UPDATE [OF COLUMNS] OR DELETE

ON tablename

[FOR EACH ROW [WHEN (condition)]]

DECLARE

 Declaration statements

BEGIN

 Executable statements

EXCEPTION

 Exception handling statements

END;

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(26) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Where, OR REPLACE is used to create a trigger even a procedure with the same

name is already exists.

The BEFORE (or AFTER) in the trigger definition refers to when trigger wants to run,

either before the actual database modification (update, delete, insert) or after.

The list of various statements, INSERT OR UPDATE [OF COLUMNS] OR DELETE

refers to statements that fire this trigger. All three can be specified, or just one.

ON tablename specifies that the trigger is associated with the table.

If FOR EACH ROW option is used then it becomes a row-level trigger otherwise it is a

statement-level trigger.

WHEN is used to fire the trigger only when the given condition is satisfied. This

clause can be used only with row triggers.

The BEGIN and END is a usual code block where PL/SQL commands can be placed.

Examples-

1) Creating Before Trigger

create or replace trigger student_bi_row

before insert

on student

for each row

begin

 if :new.adm_dt >= sysdate then

 raise_application_error

(-20002,'Admission date cannot be after system date.');

 end if;

end;

This is a simple before trigger and it is used to check whether date of admission

of the student is less than or equal to system date. Otherwise it raises an error.

2) Creating After Trigger

create trigger item_tri

after insert

on item

for each row

begin

insert into stock

values(:new.ino, :new.iname, :new.qty, :new.rate);

end;

This is a simple after trigger and which insert a new row automatically into

STOCK table whenever a new row is inserted into ITEM table.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(27) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

INSTEAD-OF triggers

 INSTEAD-OF triggers in PL/SQL are a special type of trigger that is primarily used

with views. Unlike traditional BEFORE or AFTER triggers, which execute before or after

an operation on a table, INSTEAD OF triggers are executed instead of the operation. They

can be defined to execute INSTEAD OF INSERT, INSTEAD OF UPDATE, and

INSTEAD OF DELETE operations on the view.

In Oracle, you can create an INSTEAD OF trigger for a view only. You cannot

create an INSTEAD OF trigger for a table. The following is a syntax of creating an

INSTEAD OF trigger:

CREATE [OR REPLACE] TRIGGER trigger_name

INSTEAD OF {INSERT | UPDATE | DELETE}

ON view_name

FOR EACH ROW

BEGIN

 EXCEPTION

 ...

END;

In this syntax:

 First, specify the name of the trigger after the CREATE TRIGGER keywords. Use OR

REPLACE if you want to modify an existing trigger.

 Second, use the INSTEAD OF keywords followed by an operation such as INSERT,

UPDATE, and DELETE.

 Third, specify the name of the view with which the trigger is associated.

 Finally, specify the code that executes instead of the INSERT, UPDATE, and

DELETE.

Example :

Suppose we have a view named employees_view that joins the employees table

with the departments table, making it non-updatable directly due to the join operation.

We can define an INSTEAD OF trigger to handle INSERT, UPDATE, and DELETE operations

on the employees_view as below:

CREATE OR REPLACE TRIGGER instead_of_employees_view

INSTEAD OF INSERT OR UPDATE OR DELETE ON employees_view

FOR EACH ROW

BEGIN

 -- Custom logic to handle DML operations on the view

END;

■ ■ ■ ■ ■

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(28) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

E x e r c i s e

Fill in the blanks:

1. PL/SQL stands for ……………….

2. …………. section of PL/SQL block contains all the executable statements.

3. The …………….. section of PL/SQL block is used to handle errors.

4. The …………. data type stores logical values TRUE or FALSE

5. The set of rows the cursor holds is referred to as ……………..

6. ……….. cursors are automatically created by Oracle whenever an SQL statement

is executed.

7. The cursor attribute ……………. Is used to check whether the cursor is open or

not.

8. ……….. cursors are programmer defined cursors.

9. A …………. is special stored procedure that runs when specific actions occur

within a database.

10. …………. trigger is type of trigger fires before the specified event has occurred.

Choose the correct alternatives from the following:

1. …………. section of PL/SQL block contains all the executable statements.

a) Declare b) Begin

c) Exception d) End

2. This type of trigger fires one time for the specified event statement.

a) Before b) After

c) Statement Level d) Row Level

3. This statement uses to access one row at a time from explicit cursor.

a) Open b) Access

c) Read d) Fetch

4. User defined cursors are called as ……………..

a) Explicit Cursors b) Implicit Cursors

c) Both (a) and (b) d) None of these

5. Which of the following executes the query and identifies the result set, consisting

of all rows that meet the query search criteria.

a) Fetching a cursor b) Opening a cursor

c) Closing a cursor d) None of these

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS & Core Java

COMPUTER SCIENCE Unit-III : PL/SQL

(29) Prof. V. V. Agarkar
D. M. Burungale Science & Arts College,Shegaon

Answer in ONE sentence:

1. What is PL/SQL?

2. What is Cursor?

3. What is Implicit Cursor?

4. What is Explicit Cursor?

5. What is Trigger?

6. What is a purpose of Begin section is PL/SQL block?

7. What is a purpose of Exception section is PL/SQL block?

8. What is After triggers?

9. What is Before triggers?

10. How constant is declared in Pl/SQL?

Long answer questions:

1. What is PL/SQL? State the features of PL/SQL.

2. Explain the block structure of PL/SQL. Give example.

3. Explain the variables and constants in PL/SQL. Give examples.

4. Explain the following in PL/SQL.

(i) Variable (ii) Constant (iii) Datatypes.

5. Explain datatypes supported by PL/SQL.

6. Explain the decision making statements supported by PL/SQL with example.

7. Explain the different control structure in PL/SQL with example.

8. Explain the loop control structures supported by PL/SQL with examples.

9. What is a cursor? Explain implicit and explicit cursors.

10. What is a cursor? Explain the steps to be carried out to use explicit cursor. Give

example.

11. What is cursor? Explain the cursor attributes with example.

12. Explain cursor attributes.

13. Explain the following with respect to cursor.

(i) Opening a cursor

(ii) Declaration of cursor

(iii) Fetching record from the cursor.

