

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (1) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Unit–VI

String & Packages: String: String operation, String comparison, Searching and

modifying string, StringBuffer, Wrapper classes, Packages: Package concept,

Defining Package, organizing classes and interfaces in packages, making jar files

for library packages, Java In-built Package.

String

Strings are used for storing text. In Java, a String is a fundamental data type used to

represent and manipulate text. String is a class defined in the Java standard library

(java.lang.String) and represents text rather than a numeric value. In Java, a string is a

sequence of characters. For example, “hello” is a string containing a sequence of characters

„h‟, „e‟, „l‟, „l‟, and „o‟. Double quotes are used to represent a string in Java.

In Java, basically string is an object that represents a sequence of characters. When a

string is created in Java, it actually creates an object of type String. Strings in Java are

immutable, meaning once a string object is created, its state cannot be changed. In Java,

strings are implemented using two classes either String or StringBuffer. String is an

immutable class and StringBuffer is a mutable class.

A String in Java has several key characteristics:

 Immutability: Once a String object is created, its value cannot be changed. If you

modify a String, a new String object is created in memory.

 Stored as Object: String in Java is not a primitive data type like int or double, and it‟s a

class, and each String is an instance of this class.

 Literal Creation: A String can be created simply by assigning a string literal, like

String s = “Hello”;

 Unicode Support: Java String supports Unicode, making it capable of representing a

wide range of characters and symbols.

String Operations

The java.lang.String class provides many useful methods to perform operations

on strings. Here‟s are some common operations:

1) Creation of String object

There are two ways to create String object in Java:

1. By String literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

String s = “welcome”;

2) By new keyword

String s = new String(“Welcome”);

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (2) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 String Constructors

The String class supports several constructors.

a) To create an empty String, the default constructor is called as follows:

String s = new String();

will create an instance of String with no characters in it.

b) To create a String initialized by an array of characters, use the constructor shown

here:

String(char chars[])

Here is an example:

char chars[] = { „a‟, „b‟, „c‟ };

String s = new String(chars);

This constructor initializes s with the string “abc”.

2) length method

The length() method can be used to find the length of a string. This method returns the

number of characters in the string. For example:

String str = “Hello, World!”;

int len = str.length();

In this example, str.length() returns 13 because there are 13 characters in the string

“Hello, World!”.

3) valueOf() method

This method is used to convert different types of values into their corresponding string

representation. That is, this method takes different types of parameters (such as int,

double, char, etc.) and converts them into their string representation.

String.valueOf(parameter)

 For example:

int num = 42;

String str = String.valueOf(num);

In the above code, the String.valueOf()converts 42 into the string “42”.

4) charAt()method

The Java String charAt() method is used to retrieve the character at a specified index

within a string. The index is zero-based, i.e. the first character is at index 0, the second

character is at index 1, and so on. It has this general form:

char charAt(int index)

Here, index is the index of the character to be retrieved. The charAt() returns the

character at the specified index.

For example,

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (3) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

String str = “Hello, World!”;

char ch1 = str.charAt(0); // Retrieves the first character („H‟)

char ch2 = str.charAt(5); // Retrieves the sixth character („,‟)

In this example, str.charAt(0) returns the first character of the string “Hello,

World!”, which is „H‟, and str.charAt(5) returns the sixth character, which is „,‟.

 String Comparison

The String class includes several methods that compare strings or substrings within

strings. Some of them are given below:

1) equals()

The Java string equals() method is used to compare two strings for equality. It returns

true if the two strings have the same sequence of characters, and false otherwise. The

comparison is case-sensitive. It has this general form:

str1.equals(str2)

Here, str1 and str2 both are the strings or string objects which are to be compared.

Example :

String s1 = “Hello”;

String s2 = “Hello”;

String s3 = “hello”;

s1.equals(s2)

s1.equals(s3)

In this example, s1.equals(s2) returns true because both strings contain the same

sequence of characters (“Hello”). However, s1.equals(s3) returns false because the

characters are not the same due to case difference (“Hello” vs “hello”).

2) equalsIgnoreCase()

The java equalsIgnoreCase() method is similar to the equals() method, but it

performs a case-insensitive comparison between two strings. It checks if two strings are

equal, disregarding differences in case. It has this general form:

str1.equalsIgnoreCase(str2)

Here, str1 and str2 both are the strings or string objects which are to be compared.

Example :

String s1 = “Hello”;

String s2 = “Hello”;

String s3 = “hello”;

s1.equalsIgnoreCase(s2)

s1.equalsIgnoreCase(s3)

In this example, s1.equals(s2) returns true because both strings contain the same

sequence of characters (“Hello”). Also, s1.equals(s3) returns true because both

strings contain the same sequence of characters (“Hello” and “hello”) ignoring case.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (4) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

3) startsWith()

Java String startsWith() method is used to check whether a string starts with a specific

prefix. This method returns true if the string begins with the specified prefix; otherwise, it

returns false. It has two variants and has the following general forms:

boolean startsWith(String str)

boolean startsWith(String str, int fromindex)

Here, str is the String being tested and fromindex specifies the index into the invoking

string at which point the search will begin.

For example:

String str= “Hello World”;

System.out.println("Starts with: " + str.startsWith(“Hello”));

System.out.println("Starts with: " + str.startsWith(“Wo”));

System.out.println("Starts with: " + str.startsWith(“World”, 6));

In this example, the first returns true for “Hello”, the second returns false for “Wo” and

the third returns true for “World” searches from sixth character position.

4) endsWith()

Java String endsWith() method is used to check whether a string ends with a specific

suffix. This method returns true if the string ends with the specified suffix; otherwise, it

returns false. It has the following general form:

boolean endsWith(String str)

Here, str is the String being tested.

For example,

String str= “Hello World”;

System.out.println("Ends with: " + str.endsWith(“World”));

System.out.println("Ends with: " + str.endsWith(“Hello”));

In this example, the endsWith() method is used to check if the string str ends with the

suffixes “World” and “Hello”. It returns true for “World” and false for “Hello”.

5) compareTo()

The Java String compareTo() method is used to compare two strings lexicographically

(alphabetical order). The comparison is based on the Unicode value of each character in

the strings and it is case-sensitive. It returns an integer value that indicates whether the

string being compared is less than, equal to, or greater than the other string.

The method returns:

 0 if the two strings are equal.

 A negative value if the invoking string is lexicographically less than the string

being compared.

 A positive value if the invoking string is lexicographically greater than the string

being compared.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (5) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

It has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String.

For example,

String str1 = “hello”;

String str2 = “world”;

String str3 = “hello”;

System.out.println(str1.compareTo(str2));

System.out.println(str2.compareTo(str1));

System.out.println(str1.compareTo(str3));

In this example:

 str1.compareTo(str2) returns a negative value because “hello” comes before “world”

lexicographically.

 str2.compareTo(str1) returns a positive value because “world” comes after “hello”

lexicographically.

 str1.compareTo(str3) returns 0 because both strings are equal.

6) compareToIgnoreCase()

The Java String compareToIgnoreCase() method is similar to compareTo(), but it

performs a case-insensitive lexicographical comparison of two strings. It‟s useful when

you want to compare strings without considering their case differences.

int compareToIgnoreCase(String str)

Here, str is the String being compared with the invoking String.

The method returns:

 0 if the two strings are equal (ignoring case).

 A negative value if the invoking string is lexicographically less than the string

being compared.

 A positive value if the invoking string is lexicographically greater than the string

being compared.

For example,

String str1 = “hello”;

String str2 = “world”;

String str3 = “HELLO”;

System.out.println(str1.compareToIgnoreCase(str2));

System.out.println(str2.compareToIgnoreCase(str1));

System.out.println(str1.compareToIgnoreCase(str3));

In this example:

 str1.compareToIgnoreCase(str2) returns a negative value because “hello” comes

before “world” lexicographically.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (6) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 str2.compareToIgnoreCase(str1) returns a positive value because “world” comes

after “hello” lexicographically.

 str1.compareToIgnoreCase(str3) returns 0 because both strings are equal, ignoring

case.

 Searching Strings

The String class provides two methods that allow you to search a string for a specified

character or substring: indexOf() and lastIndexOf().

1) indexOf() method

The indexOf() method is used to find the index of the first occurrence of a specified

substring within a string. It searches the string from the beginning and returns the index of

the first occurrence of the specified substring, or –1 if the substring is not found. The

general syntax is:

indexOf(String substring)

Additionally, there‟s another version of indexOf() that takes an additional parameter

specifying the starting index from where the search should begin

indexOf(String substring, int startindex)

Example:

 String str = “Corporation floor”;

 str.indexOf(“r”);

 str.indexOf(“r”, 11);

 str.indexOf(“or”);

 str.indexOf(“or”, 10);

In the above example:

 str.indexOf(“r”) returns 2 because the first occurrence of „r‟ is at index 2.

 str.indexOf(“r”,11) returns 16 because the first occurrence of „r‟ after index 11

is at index 16.

 str.indexOf(“or”) returns 1 because the first occurrence of substring “or” starts at

index 1.

 str.indexOf(“or”,10) returns 15 because the first occurrence of substring “or”

after index 10 is at index 15.

2) The lastIndexOf() method

The lastIndexOf() method returns the position of the last occurrence of a given

character or substring in a String, and if the given substring is not found it returns –1. The

index counter starts from zero. This method has four variants are as follows:

 Method Description

lastIndexOf(char ch)
returns index position for the last occurrence of

given char value.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (7) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

lastIndexOf(char ch,

 int ToIndex)

Returns index position for the last occurrence of

given char value and search performs within 0
th

index to ToIndex only.

lastIndexOf(String substring)
returns index position for the last occurrence of

given substring.

lastIndexOf(String substring,

 int TOIndex)

returns last index position of the first character

for the given substring and search performs

within 0
th

 index to ToIndex only.

Examples:

 String str = “Corporation floor”;

 str.lastIndexOf(„r‟);

 str.lastIndexOf(„r‟, 11);

 str.lastIndexOf(“or”);

 str.lastIndexOf(“or”, 10);

In the above example:

 str.lastIndexOf(“r”) returns 16 because the last occurrence of „r‟ is at index 16.

 str. lastIndexOf (“r”,11) returns 5 because the last occurrence of „r‟ before

index 11 is at index 5.

 str. lastIndexOf (“or”) returns 15 because the last occurrence of substring “or”

starts at index 15.

 str. lastIndexOf (“or”,10) returns 4 because the last occurrence of substring

“or” before the index 10 is at index 4.

 Modifying a String

Because String objects are immutable, whenever you want to modify a String, you

must either copy it into a StringBuffer or StringBuilder, or use one of the following

String methods, which will construct a new copy of the string with your modifications

complete.

1) substring()

The substring() method in Java is used to extract a part of a string, starting from a

specified index to the end of the string or up to a specified ending index. The syntax is as

follows:

String substring(int startIndex)

String substring(int startIndex, int endIndex)

Here,

 startIndex is the index from which the substring starts. It is inclusive.

 endIndex (Optional) is the index before which the substring ends. It is exclusive. If

not specified, the substring extends to the end of the original string.

Example:

String s = “Computer Science”;

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (8) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

System.out.println(s.substring(9));

System.out.println(s.substring(3,6));

The first prints Science and second prints put.

2) concat()

The Java String concat() method is used to concatenate one string to the end of another.

It returns a new string that represents the concatenation of the original string with the

specified string. The general form is:

String concat(String str)

str is the string to be concatenated to the end of the original string.

For example,

String s1 = “Ja”;

String s2 = “va”;

String s3 = s1.concat(s2);

The string s3 contains the string “Java”.

3) replace()

The replace() method in Java is used to replace all occurrences of a specified character

or substring within a string with another character or substring. It returns a new string

with the replacements made. The syntax is as follows:

String replace(char oldChar, char newChar)

String replace(CharSequence target, CharSequence replacement)

Here,

 oldChar: The character to be replaced.

 newChar: The character to replace all occurrences of oldChar.

 target: The substring to be replaced.

 replacement: The substring that replaces all occurrences of target.

For Example :

String str = “Hello World”;

String s1 = str.replace(„o‟, „x‟);

String s2 = str.replace(“World”, “Java”);

In this example, String s1 contains “Hellx Wxrld” after replacing all „o‟ by „x‟ and

String s2 contains “Hello Java” after replacing „World‟ by „Java‟;

4) trim()

The trim() method in Java is used to remove leading and trailing whitespace (spaces,

tabs, and newlines) from a string. It returns a new string with whitespace removed. The

syntax is as follows:

String trim()

Here is an example:

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (9) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

String s1 = “ Hello World ”;

String s2 = s1.trim();

In this example, trim() method is used to remove leading and trailing whitespace from the

string s1, resulting in a trimmed string stored in s2.

5) toLowerCase()

The toLowerCase() method in Java is used to convert all characters of a string to

lowercase. It returns a new string with all characters converted to lowercase. The syntax

is as follows:

String toLowerCase()

Example,

String s1 = “COMPUTER”;

String s2 = s1.toLowerCase();

In this example, the string s1 contains “COMPUTER”, and the toLowerCase() method

converts all characters of s1 to lowercase, so string “computer” is stored in s2.

6) toUpperCase()

The toUpperCase() method in Java is used to convert all characters of a string to

uppercase. It returns a new string with all characters converted to uppercase. The syntax

is as follows:

String toUpperCase()

Example,

String s1 = “computer”;

String s2 = str.toUpperCase();

In this example, the string s1 contains “computer”, and the toUpperCase() method

converts all characters of s1 to uppercase, so string “COMPUTER” is stored in s2.

StringBuffer

 A StringBuffer class is a class in the java.lang package and it is used to create

mutable (modifiable) strings. The StringBuffer class in Java is the same as the String

class except it is mutable i.e. it can be changed. The StringBuffer class allows to modify

the contents of a string without creating a new object every time. The string represents fixed-

length, immutable character sequences while StringBuffer represents growable and

writable character sequences. Java StringBuffer class is thread-safe i.e. multiple threads

cannot access it simultaneously.

Key Features of StringBuffer

 Mutable: StringBuffer provides the flexibility to change the content, making it

ideal for scenarios where you have to modify strings frequently.

 Synchronized: Being thread-safe, it ensures that only one thread can access the

buffer‟s methods at a time, making it suitable for multi-threaded environments.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (10) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 Performance Efficient: For repeated string manipulation, using StringBuffer can

be more efficient than the String class.

 Method Availability: StringBuffer offers several methods to manipulate strings.

These include append(), insert(), delete(), reverse(), and replace().

Following are some StringBuffer methods:

1) append()

The append() method of Java StringBuffer class is used to append the specified

string to the end of the StringBuffer. The general form is:

StringBuffer append(String str)

str is the string to be appended to the end of the StringBuffer.

For Example :

StringBuffer sb = new StringBuffer(“Hello”);

sb.append(“ World”);

System.out.println(sb);

It prints “Hello World” i.e. append “ World” to the “Hello”.

Note that, the append() method has several overloaded versions (around 13 variants) to

accept different types of data.

2) insert()

The insert() method of Java in the StringBuffer class is used to insert characters or

sequences of characters into a StringBuffer object at a specified position. The general

form is:

StringBuffer insert(int position, String str)

For Example :

StringBuffer sb = new StringBuffer(“Hello”);

sb.insert(5, “ World”);

System.out.println(sb);

It prints “Hello World” i.e. inserted “ World” to the “Hello” string from character

position number 5.

Note that, the insert() method has several overloaded versions to accept different types

of data.

3) delete()

The delete() method of Java in StringBuffer class is used to remove or delete

characters from the StringBuffer object, starting from a specified index up to a

specified ending index. The method returns the string after deleting the characters given

by the range mentioned in the parameters. The general syntax is as follows:

StringBuffer delete(int startIndex, int endIndex)

Here,

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (11) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 startIndex is the index from which the deleting starts. It is inclusive.

 endIndex is the index before which the deleting ends. It is exclusive.

Example:

StringBuffer sb = new StringBuffer(“Hello World”);

sb.delete(5, 10);

System.out.println(sb);

It prints “Hellod” i.e. after deleting characters “ Worl” from position number 5 to 9.

4) reverse()

The reverse() method of Java in the StringBuffer class is used to reverse the

characters in the StringBuffer object. It does not return anything; instead, it modifies

the original StringBuffer. This method does not accept any parameters. The general

form is:

StringBuffer reverse()

For Example :

StringBuffer sb = new StringBuffer(“Hello World”);

sb.reverse();

System.out.println(sb);

In this example, the reverse() method is called on the StringBuffer object sb, which

contains the string “Hello World”. After calling reverse(), the characters in sb are

reversed, resulting in the string “dlroW olleH”.

Wrapper classes

Java Wrapper classes provide a way to use primitive data types as objects. In Java,

primitive data types like int, double, float, etc., are not objects and do not have methods

associated with them. Wrapper classes are used to convert primitive data types into objects so

that they can be used in Java where objects are required.

 Each primitive data type in Java has a corresponding wrapper class. Here are the

wrapper classes for some common primitive data types:

Primitive Data Type Wrapper Class

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

 [Table : Primitive data types and their corresponding Wrapper class]

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (12) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

 Need and Advantages of Wrapper classes

Wrapper classes in Java serve several important purposes:

1. Conversion between primitive types and objects: Wrapper classes provide a way to

convert primitive data types into objects and vice versa. This is particularly useful when

working with collections or generics, which only accept objects.

2. Nullable values: Wrapper classes allow for null values to be assigned to variables,

whereas primitive types cannot hold null values. This is helpful where you need to

represent the absence of a value, such as with database queries or user inputs.

3. Generics: Wrapper classes are often used with generics because generics in Java cannot

directly use primitive types. For example, you cannot create a „List<int>‟; instead, you

would use „List<Integer>‟ where „Integer‟ is the wrapper class for „int‟.

4. Standardized behavior and methods: Wrapper classes provide standardized behavior

and methods for working with primitive data types. For example, „Integer‟ provides

methods like „parseInt()‟ for converting strings to integers, and „toString()‟ for

converting integers to strings.

5. Collections and algorithms: Wrapper classes are commonly used in Java collections and

algorithms because collections can only hold objects, not primitive types. For example,

„ArrayList<Integer>‟ is a common way to store a list of integers in Java.

Java provides automatic conversion between primitive data types and their

corresponding wrapper classes, without explicitly calling constructors or methods. The

automatic conversion of primitive data type into its corresponding wrapper class is known as

autoboxing, for example, byte to Byte, char to Character, int to Integer, etc. The

automatic conversion of wrapper type into its corresponding primitive type is known as

unboxing, it is the reverse process of autoboxing.

Packages

In Java, packages are a mechanism to organize and manage classes and interfaces. A

package is a collection of related classes and interfaces. Packages provide a means to reuse

classes defined in one application into another application. A package serves two purposes.

First, it provides a mechanism by which related pieces (classes and interfaces) of a program

can be organized as a unit. Classes defined within a package must be accessed through their

package name. Thus, a package provides a way to name a collection of classes. Second, a

package participates in Java‟s access control mechanism. Classes defined within a package

can be made private to that package and not accessible by code outside the package. Thus, the

package provides a means by which classes can be encapsulated.

Packages are organized in a hierarchical structure, like the directory of the file system.

The periods (dots) are used to separate levels in the package hierarchy. Each package in Java

has its unique name and organizes its classes and interfaces into a separate namespace.

Following is an example to show hierarchical structure of packages:

 com

 └── example

 └── myproject

 └── MyClass.java

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (13) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Defining a Package

To define a package in Java, a package declaration should be included at the

beginning of the Java source file, i.e. simply includes a package command as the first

statement in a Java source file. Any classes declared within that file will belong to the

specified package. The package statement defines a name space in which classes are stored.

If you omit the package statement, the class names are put into the default package, which

has no name. This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package.

For example, the following statement creates a package called MyPackage.

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for

any classes you declare to be part of MyPackage must be stored in a directory called

MyPackage. Remember that the directory name must match the package name exactly.

You can create a hierarchy of packages. To do so, simply separate each package name

from the one above it by use of a period. The general form of a multileveled package

statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development system.

For example, a package declared as

package com.example.MyProject;

needs to be stored in com\example\MyProject in a Windows environment.

Organizing classes and interfaces in packages

Organizing classes and interfaces in packages helps in maintaining a well-structured

and modular codebase. Proper organization promotes code readability, maintainability, and

reusability. Following is a typical approach to organize classes and interfaces in packages:

1. Choose meaningful package names: Package names should reflect the functionality

or purpose of the classes/interfaces contained within them. This helps prevent naming

conflicts and makes it easier for developers to understand the purpose of each

package. Use lowercase letters for naming packages.

2. Group related classes/interfaces together: Place classes and interfaces that are

closely related to each other within the same package.

3. Avoid deep nesting: Try to avoid excessive levels of nesting within packages.

Deeply nested packages can make the codebase harder to navigate and understand.

4. Use sub-packages carefully: Sub-packages can be used to further organize classes

within a package, but don‟t overuse them. Use sub-packages only when it

significantly improves the organization and clarity of your codebase.

5. Follow Java naming conventions: Adhere to Java naming conventions when naming

packages, classes, and interfaces. Classes and interfaces should use camelCase with

the first letter capitalized, while package names should be all lowercase.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (14) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

6. Document package-level comments: Provide package-level documentation

comments to describe the purpose and usage of each package. This helps other

developers understand the contents of the package without looking into the details.

7. Keep packages small and focused: Aim for small, focused packages with a clear

purpose. If a package becomes too large, consider refactoring it into smaller, more

specialized packages.

Making jar files for library packages

In Java, JAR stands for Java ARchive. It is a package file format typically used to

combine many Java class files and associated metadata and resources (text, images, etc.) into

one file to distribute application software or libraries on the Java platform. In simple words, a

JAR file is a file that contains a compressed version of .class files, audio files, image files,

or directories. We can imagine a .jar file as a zipped file (.zip).

A step-by-step procedure to create JAR files for library packages is as follows:

1. Compile Source Code:

• Compile the Java source code files (.java files) into bytecode (.class files).

• Ensure that you compile all source files that belong to the library package.

2. Create a Manifest File (Optional):

• If your JAR file requires a manifest file (for specifying entry points, main class, etc.),

create a text file named MANIFEST.MF.

• Add necessary entries to the manifest file.

3. Organize Files:

• Organize the compiled class files, resources (if any), and manifest file (if required)

into a directory structure that matches the package hierarchy.

• Ensure that the directory structure mirrors the package hierarchy.

4. Create the JAR File:

• Use the jar command-line tool (provided by the JDK) to create the JAR file.

• The syntax is:

jar cf jarfilename inputfiles

The options and arguments used in this command are:

• The c option indicates to create a JAR file.

• The f option indicates that the output go to a file rather than to stdout.

• jarfilename is the name of the resulting JAR file. By convention, JAR filenames

are given a .jar extension, though this is not required.

• The input-files is a space-separated list of one or more files that you want to

include in your JAR file.

• The command will generate a JAR file and place it in the current directory.

Once the JAR file is created and verified, you can distribute it as a library for others to

use. Users can include the JAR file in their Java project‟s classpaths to use the classes and

resources provided by the library.

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (15) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Types of packages in Java

There are two types of packages in java: Built-in and User-Defined packages.

1) Built-in package

The prewritten package in Java is known as built-in packages. These built-in packages are

those which are supplied as a part of JDK and are automatically available for use in Java

programs. Java comes with several built-in packages, which provide a wide range of

functionalities to developers. These packages are part of the Java Development Kit (JDK)

and are automatically available for use in Java programs.

The Java API is a library of prewritten classes that are free to use, included in the Java

Development Environment. The library contains components for managing input,

database programming, and much more. The library is divided into packages and classes.

Meaning you can either import a single class (along with its methods and attributes), or a

whole package that contain all the classes that belong to the specified package. To use a

class or a package from the library, you need to use the import keyword. There are many

predefined packages in java some of them are as follows:

java.lang This package contains language support classes (e.g. classes which

defines primitive data types, math operations). This package is

automatically imported for each and every java program.

java.io This package contains classes for supporting input / output operations.

java.util This package contains utility classes such as Scanner class, Date Class,

class for implement data structure and Collection Framework API etc.

java.net This package contains all the classes for supporting networking

operations. This is used for developing client server applications.

java.text This package is used for formatting date and time on day to day

business operations.

java.sql This package is used for retrieving the data from database and

performing various operations on database.

java.awt This package is an Abstract Windowing Toolkit. It contains classes for

implementing the components for graphical user interfaces (like button ,

menus etc).

java.applet This package contains classes for creating Applets.

There are many more packages

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (16) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

2) User-defined package:

In Java, user can create his own packages to organize and structure his code. A package

that is created by user is called user-defined package. A user defined package is used to

group set of classes, interfaces and sub packages which are commonly used at one place.

Once the classes are added to the package, user can use them in other Java files by

importing them. The user defined package provided access protection and namespace

management.

In Java, to declare user defined package, the package statement is used as the first non-

comment statement in a Java source file. The package statement must appear before any

import statements or class declarations in the file.

Importing Packages

Java includes the import statement to bring certain classes, or entire packages, into

visibility. Once imported, a class can be referred directly using only its name.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. The general form is:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a

subordinate package inside the outer package separated by a dot (.). There is no practical

limit on the depth of a package hierarchy, except that imposed by the file system. Finally, you

specify either an explicit classname or a star (*), which indicates that the Java compiler

should import the entire package.

Following examples show both forms in use:

Example 1:

import java.util.Scanner;

Here:

java is a top level package

util is a sub package

and Scanner is a class which is present in the sub package util.

In example-1 only the Scanner class from the java.util package is imported.

Example 2:

import java.util.*;

In example-2 a whole package is imported. This example will import ALL the classes in the

java.util package.

■ ■ ■ ■ ■

B. Sc. II (Semester-IV) CBCS 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE (2023-24) Unit-VI : String, Package

 (17) PROF. V. V. AGARKAR

Shri D. M. Burungale Science & Arts College, Shegaon

Sample Questions

1. Explain the following methods with example:

 (i) String.Substring() (ii) String.Compare()

 (iii) String.Concat() 6

2. What is string? Explain any three string comparison functions. 6

3. Explain following function with syntax and example :

 (i) substring() (ii) concat() (iii) trim() 6

4. Explain the following:

 (i) substring() (ii) replace() (iii) concat() 6

5. State string operations in Java with syntax and write a program in Java to

demonstrate the use of string comparison. 6

6. What is a wrapper class? Explain need and advantages of wrapper class. 6

7. Describe concept of importing package with example. 6

8. Explain Java-in-built package with example. 6

9. What is package? How to define a package? Explain with suitable example. 6

10. Explain the concept of package and write Java In-Built packages. 6

■ ■ ■ ■ ■

