

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (1) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

UNIT - I

Syllabus: Fundamental of DBMS: Traditional Vs DBMS File approach,

DBMS Architecture, Data Models, Relational Model, Relations, Domain

and Attributes, Keys, E-R diagram, reducing ER diagram to table,

Functional Dependency, Normalization: 1NF, 2NF, 3NF, 4NF, BCNF.

Traditional vs DBMS File approach

The traditional file approach and the DataBase Management System (DBMS)

approach are two different methods for organizing and managing data in computer

systems. Following is a comparison between this two:

1. Data Organization:

 Traditional File Approach: In traditional file processing systems, data is

typically organized into separate files, where each file contains records.

 DBMS Approach: In a DBMS, data is organized in a structured format using

tables. Tables consist of rows and columns, where each row represents a record.

2. Data Integrity:

 Traditional File Approach: Ensuring data integrity can be challenging in the

traditional file approach, as there may be no built-in mechanisms for this.

 DBMS Approach: DBMS provides mechanisms such as constraints, triggers, and

transactions to enforce data integrity.

3. Data Access:

 Traditional File Approach: In file systems, data access is often procedural, i.e.

developers must write programs to read and manipulate data from files.

 DBMS Approach: DBMS provides a query language (SQL) for accessing and

manipulating data. Users can write queries to retrieve, insert, update, and delete

data without needing to know the underlying data storage details.

4. Data Redundancy:

 Traditional File Approach: Data redundancy is common in the traditional file

approach because the same data may be stored in multiple files or within the same

file. This can lead to data inconsistency.

 DBMS Approach: DBMS aims to minimize data redundancy through

normalization techniques. This helps maintain data integrity and consistency.

5. Security:

 Traditional File Approach: In file systems, security mechanisms need to be

implemented manually, which can be error-prone and complex.

 DBMS Approach: DBMS provides security features such as authentication,

authorization, and encryption to protect data from unauthorized access.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (2) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Database

A database is a well-organized collection of stored operational data used by the

application system of some particular enterprise. An „enterprise‟ may be any self

contained commercial, scientific, technical, or other organization. Some examples are: -

Manufacturing Company, Bank, Hospital, University, etc.

Data Base Management System

A database management system (DBMS) is the software that handles all access

to the database. It is a collection of interrelated data and a set of programs to access those

data. The collection of data, usually referred to as the database. The primary goal of a

DBMS is to provide a way to store and retrieve database information that is both

convenient and efficient.

Database systems are designed to manage large bodies of information.

Management of data involves both defining structures for storage of information and

providing mechanisms for the manipulation of information. In addition, the database

system must ensure the safety of the information stored, despite system crashes or

attempts at unauthorized access. If data are to be shared among several users, the system

must avoid possible anomalous results.

Advantages / Characteristic / Objectives of DBMS

1. Mass Storage

DBMS can store a lot of data in it. So for all the big firms, it can store thousands of

records in it and one can fetch all that data whenever it is needed.

2. Removes Duplicity (Redundancy)

DBMS guarantee it that there will be no data duplicity among all the records. While

storing new records, DBMS makes sure that same data was not inserted before.

3. Multiple Users Access (Shareability)

DBMS is an ability to share data resources. Two or more users can access database

simultaneously. DBMS makes it sure that multiple users can work concurrently.

4. Data Protection

DBMS gives a master level security to their data. No one can alter or modify the

information without the privilege of using that data.

5. Data Backup and recovery

DBMS has the ability to backup and recover all the data in database, so that on

database failure it can be recovered.

6. Integrity

Integrity means your data is authentic and consistent. DBMS has various validity

checks that make your data completely accurate and consistence.

7. Platform Independent

One can run DBMS at any platform. No particular platform is required to work on

database management system.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (3) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Architecture of DBMS (Three-tier architecture)

 The objective of the architecture is to separate the users‟ view. This logical

architecture describes how data in the database is viewed by users. It is not concerned

with how the data is handled and processed by the DBMS, but only with how it looks.

The majority of DBMS available today are based on the ANSI/SPARC

generalized architecture. Hence this is also called as the ANSI/SPARC model. It divides

the system into three levels of abstraction: external level, conceptual level & internal

level. Hence it is also called three-level or three-tier architecture.

 The view at each of these levels is described by a schema. A schema describes

the logical records and relationships existing in the view. Following figure (Fig.1) shows

the three levels of the database system architecture:

External Level

(Individual user views)

View

A

View

B
- - -

View

Z

Conceptual Level

(Community user view)

Conceptual View

Internal Level

(Storage view)

Internal View

[Fig. 1: Three levels of database architecture]

1. External level (view)

This is a user's view of the database. It allows the user to see only the data of his

interest and hides the data which the user is not authorised to access. This is the

individual user level. There can be many external views of the database, so that the

same data can be seen by different users in different ways, at the same time. The user

at this level can be either an application programmer or an end user.

Each external view is defined by means of external schema; hence there are many

external schemas. Each external schema consists of definitions of logical record and

relationships in the external view.

2. Conceptual level (view)

The conceptual level presents a logical view of the entire database as a whole. It

allows the user to view all the data in the database together at one place. This level

does not provide any storage or access details. DBA works at this level.

External/Conceptual Mapping

Conceptual/internal Mapping

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (4) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

The conceptual view is defined by means of the conceptual schema, and there is

only one conceptual schema per database.

3. Internal level (view)

The internal level is the one closest to the physical storage. It describes how the data

is actually stored in the database and on the computer hardware. At this level the

record types and methods of storage are defined.

The internal view is described by means of internal schema. It not only defines the

various types of stored records, but also specifies what indexes exist, how stored

fields are represented what physical sequence the stored records are in, & so on.

4. External/conceptual mapping

The External/conceptual mapping is a mapping between the external view and the

conceptual view. An external/conceptual mapping defines the correspondence

between a particular external view and conceptual view. This mapping determines

how the conceptual record is viewed by the user.

5. Conceptual/internal mapping

The conceptual/ internal mapping defines the correspondence between the conceptual

view & the stored database. It specifies how conceptual records & fields are

represented at the internal level. If the structure of the stored database is changed

then the conceptual/ internal mapping must be changed accordingly, so that the

conceptual schema can remain invariant.

Data Model

In DBMS, a data model defines the way data is organized, documented, and

defined within a database. A database model shows the logical structure of a database,

including the relationships and constraints that determine how data can be stored and

accessed. The data model also describes the elements used to standardize the system,

such as associations, entities and requirements. There are several types of data models

used in DBMS, Following are some types of data model:

1) Hierarchical data model 2) Network data model

3) Object-Oriented data model 4) Relational data model

5) Entity-Relationship (E-R) data model (see page No. 9)

1. Hierarchical data model

The hierarchical model is one of the oldest model which was developed by IBM,

in the 1950s. In this model, the data is organized into a tree-like structure where each

record consists of one parent record and many children. Sibling records are sorted in a

particular order. That order is used as the physical order for storing the database. This

model represent one-to-many relationship. This model is good for describing many real-

world relationships. This model was primarily used by IBM‟s Information Management

Systems in the 60s and 70s, but they are rarely seen today due to certain operational

inefficiencies.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (5) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

[Fig. 2: Hierarchical data model]

The main drawback of this model is that, it can have only one-to-many

relationship between nodes.

2. Network data model

The network data model is a database model designed to represent complex

relationships between data entities. It was developed in the 1960‟s as an enhanced form

of the hierarchical data model. In the network model, data is organized as a collection of

records and relationships are established through pointers or links between these records.

Data organization in the network model is just like a graph rather than a tree. Unlike the

hierarchical model, where each child node could have only one parent, in the network

model, a child node can have multiple parent nodes, allowing many-to-many

relationships. The network model was the most widely used model before the relational

database model was introduced. Following figure is an example of a network model:

[Fig. 3: Network data model]

 In this figure, the subject is the child class and student and degree are the parent

classes. So, the subject has two parent classes.

3. Object-Oriented data model

The object-oriented data model is a way of structuring and representing data in

which real-world entities are modeled as objects that have both data attributes

(properties) and behaviors (methods). It is based on the principles of object-oriented

programming (OOP), which include encapsulation, inheritance, and polymorphism. This

model is widely used in software development for building complex, modular, and

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (6) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

maintainable systems. It promotes code reuse, modularity, and flexibility, making it well-

suited for modeling and simulating real-world entities and systems.

4. Relational data model

The relational data model was introduced by Edgar F. Codd in the early 1970s

and has become the most widely used data model for databases. This model is based on

the concept of a relation, which is essentially a table with rows and columns. A row is

called as tupple and column is called as attribute. The relational model uses a collection

of tables to represent both data and the relationships among those data. Each table has

multiple columns, and each column has a unique name. Each table contains records of a

particular type, each record type defines a fixed number of fields (attributes). The

columns of the table correspond to the attributes of the record type. The relational model

is an example of a record-based model.

Advantages of the relational data model include its simplicity, flexibility, and

ability to handle complex relationships between data entities. It also provides a

standardized way to query and manipulate data using Structured Query Language (SQL).

Example:

Student Department

StudentID SName DOA DeptID DeptID DName

101 Smith 02-07-2024 001 001 Chemistry

102 John 04-07-2024 006 002 Computer

103 Blake 05-07-2024 002 003 Electronics

104 David 05-07-2024 005 004 Environment

105 Mary 08-07-2024 003 005 Mathematics

 006 Microbiology

In this example, the Student table stores information about students, while the

Department table stores information about students admitted to the department. The

DeptID column in the Student table is a foreign key that references the DeptID column in

the Department table, establishing a relationship between the two tables.

Advantages

1) The relational query language gives a set of commands that allows the user to

perform any number of operations.

2) No necessity of learning inner structure of the database.

3) Data independence allows easy structure modifications.

4) Set processing allows one command to modify large group of data.

Disadvantages

1) Query languages require more processing time and money.

2) Data must be related to act upon.

3) Set processing is not suited to conventional programming language.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (7) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Relation

Given a collection of sets D1, D2, . . ., Dn, not necessarily distinct, R is a

relation on those n sets, if it is a set of ordered n-tuples <d1, d2, . . ., dn>

such that d1 belongs to D1, d2 belongs to D2, . . ., dn belongs to Dn. Sets

D1, D2, . . . , Dn are the domains of R. The value n is the degree of R.

Consider a relation PART of degree 5 as shown below:

P# PNAME COLOR WEIGHT CITY

P1 Nut Red 12 London

P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London

 [Fig.4: The relation PART]

Each row of the table represents one tuple & each column represents one attribute

of the relation.

The number of attributes in the relation is called the degree of the relation and the

number of tuples in the relation is called cardinality of the relation. The degree of PART

relation is 5 and cardinality of PART relation is 4. Relations of degree one are said to be

unary, relations of degree two are binary, … and relations of degree n are n-ary.

Attribute

In relational database systems, attributes corresponds to fields (i.e. columns) of

relation. An attribute may only be allowed to take a value from a set of permissible

values. This set of allowable values for the attribute is called the domain of that

attribute. Every attribute is defined on one underlying domain and values for any

attributes are taken only from its corresponding domain.

Example :- In relation PART as shown in Fig.1, P#, PNAME, COLOR, WEIGHT

and CITY are the attributes. Total five attributes are in relation PART.

Domain

The domain is a set of homogeneous members. The members from domain can be

assigned to the attributes. Therefore for every attribute in a relation there is one

underlying domain.

The domain is said to be simple or atomic if all its elements are non-decomposable

(i.e. atomic). The domain is said to be composite or non-atomic if all its elements are

non-atomic.

Example:- In relation PART as shown in Fig.1 is defined with five attributes

namely, P#, PNAME, COLOR, WEIGHT and CITY so there are five domains.

The five domains are sets of values representing, respectively, part numbers, part

names, part colors, part weights, and locations in which parts are stored. . Each

specified attribute is being drawn from a corresponding domain.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (8) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Keys

Key is an attribute or group of attributes, which is used to identify a row in a relation.

Following are some significance of keys:

1. Keys ensure that each record (i.e. tuple) in the table is properly identified.

2. Keys help establish & enforce integrity rules.

3. Keys help establish relationship between tables (i.e. relations).

4. Keys enable faster searches in a table.

Following are different types of keys:

1. Primary Key

A primary key is the attribute which is unique within the relation. Primary key is

used to uniquely identify any tuple in the relation. Following are the important

elements of the primary key:

 It must have unique values and it cannot be a null field.

 Its value cannot be modified except in very rare cases.

For example, attribute S# of the S relation contains a distinct S# value, and can be

used to distinguish that tuple from all others in the relation. Thus S# is said to be

primary key for S.

2. Super Key or Combination key

Not every relation will have a single-attribute primary key. However, every relation

will have some combination of attributes that, when taken together, have the

unique identification property. Such keys are known as combination keys or super

keys. In the relation SP, the combination (S#, P#) has this property.

3. Candidate Key

Occasionally in a relation, there is more than one attribute possessing the unique

identification property, such attributes are called candidate keys and hence a

relation have more than one candidate key.

For example, in S relation, each supplier has a unique S# and SNAME. Both S#

and SNAME are the candidate keys of relation S. In such case one may arbitrarily

choose one of the candidates, say S#, as the primary key for the relation.

4. Alternate key

A candidate key that is not a primary key is called alternate key. An alternate key is

useful in providing a second means of identification for each tuple in the relation.

For example, in S relation, both S# and SNAME are the candidate keys. S#

chooses as the primary key for the relation, and then SNAME is an alternate key.

5. Foreign Key

A foreign key is a copy of a primary key in another relation. The key connects to

another relation when a relationship is being established.

For example, S# and P# keys of SP relation have this property.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (9) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Entity-Relationship (E-R) Model

The Entity-Relationship (E-R) data model allows to describe the data involved in a

real-world in terms of objects and their relationships. The E-R data model is based on

the real world as a collection of basic objects called entities and the relationships

among these objects. The E-R model expresses graphically by an E-R diagram.

 Entity / Entities

An entity is a “thing” or “object” that exists and is distinguishable from other

objects. A place, person, picture, thing, concept, process result or data are some of

the examples of entities. An entity may be concrete (a person or a book, for example)

or abstract (like a holiday or a concept). An entity has a set of properties.

 Entity set

Entity set is a set of entities of the same type that share the same properties. For

example, the set of all employees can be defined as the entity set Employee.

Weak entity set: If an entity set does not have sufficient attributes to from a primary

key; such entity set is called weak entity set.

Strong entity set: An entity set which has a primary key is called as strong entity set.

 Attributes

Each entity has a set of specific characteristics which describe the object. These

characteristic are called attributes. For example, attributes of Employee entity are

Emp-No, Emp-Name, Address, etc.

Simple attribute: Attributes which are not divided into subparts (i.e. other attributes),

are called Simple attributes.

Composite attribute: Some attributes can be divided into smaller subparts (i.e. other

attributes). An attribute which is composed of several more basic attributes is called

composite attribute. For example, name attribute has sub attributes first-name,

middle-name, and last-name, thus, name is a composite attribute.

Single-valued attribute: The attributes have a single value for a particular entity, is

called single-valued attributes.

Multi-valued attribute: If an attribute has a set of values for a specific entity, then it

is said to be multivalued. Consider an employee entity set with the attribute phone-

number. An employee may have zero, one, or several phone numbers, and different

employees may have different numbers of phones.

 Relationship (Relationship set)

A relationship is an association among several entities. Relationship holds together

the various components of E-R model. Relationships in databases are often binary.

Other types of relationships are ternary and recursive relationships.

Mapping cardinalities

Mapping cardinalities express the number of entities from one entity set

associates with entities of another entity set by a binary relationship.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (10) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

1. One-to-one

An entity in A is associated with

at most one entity in B, and an

entity in B is also associated with

at most one entity in A. This is

illustrated in Fig. 5.

 Entity set A Entity set B

[Fig. 5 : One-to-one relationship]

2. Many-to-one

An entity in A is associated with

at most one entity in B. An entity

in B, however, can be associated

with any number of entities in A.

This is illustrated in Fig.6.

 Entity set A Entity set B

[Fig. 6 : Many-to-one relationship]

3. One-to-many

An entity in A is associated with

any number of entities in B. An

entity in B. however, can be

associated with at most one entity

in A. As shown in Fig.7.

 Entity set A Entity set B

[Fig. 7 : One-to-many relationship]

NOTE:- When there is a one-to-many relationship between A and B, there is a Many-to- one

relationship between B and A.

A1

A2

A3

 A4

 B1

 B2

 B3

 B4

A1

A2

A3

A4

B1

B2

B3

A1

A2

A3

B1

B2

B3

B4

B5

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (11) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

A1

A2

A3

B1

B2

B3

4. Mane-to-many

An entity in A is associated with

any number of entities in B and an

entity in B is also associated with

any number of entities in A. This

is illustrated in Fig.8.

 Entity set A Entity set B

[Fig. 8 : Many-to-many relationship]

E-R Diagram

The overall logical structure of a database can be expressed graphically by an E-

R diagram. An E-R diagram is a method of representing entities, attributes and

relationships. An E-R diagram consists of the following components:

1. Rectangles, which represent entity sets

2. Ellipses, which represent attributes

3. Diamonds, which represent relationship among entity sets

4. Lines, which link attributes to entity sets and entity sets to relationships.

Entity set

Weak Entity set

Attribute

Key Attribute

Multivalued

Attribute

Derived Attribute

Relationship

 [Fig. 9: Symbols used in E-R diagrams]

When an E-R diagram is built, the first step is to define the entities. The next step is

to define the relationship between entities. The final step is to identify the attributes that

belong to each entity. Attributes of an entity set that are members of the primary key are

underlined. Each component except lines is labeled with a unique name.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (12) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

 Many-to-many Relationship

 * *

 One-to-one Relationship

 1 1

 Many-to-one Relationship

 * 1

 One-to-many Relationship

 1 *

[Fig. 10 : Alternative symbols for Relationships used in E-R diagrams]

Examples:

1. Consider the following entity-relationship diagram in Figure 11, which consists of

two entity sets, customer and loan, related through a binary relationship set

borrower. The attributes associated with customer are customer-id, customer-name,

customer-street, and customer-city. The attributes associated with loan are loan-

number and amount.

(a) In above E-R diagram, the relationship set borrower is many-to-many.

(b)

[Fig. 11 : E-R diagram corresponding to customers and loans]

 If the relationship set borrower were one-to-many, from customer to loan, then

the line from borrower to customer would be directed, with an arrow pointing to the

customer entity set (Figure 11(b)).

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (13) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

2. Following is a E-R diagram shown in Fig. 12, which consists of two entity sets,

employee and project, related through a relationship set Assigned_To (many-to-

one). The attributes associated with employee are name and number. The attributes

associated with project are project-name, project-no and chief-architect.

[Fig. 12 : E-R diagram corresponding to employee and project]

3. Following entity-relationship diagram in Figure 13, this consists of three entity sets,

employee, job, and branch, related through the ternary relationship set works-on.

The attributes associated with employee are employee-id, employee-name, street,

and city. The attributes associated with branch are branch-name and branch-city,

assets. The attributes associated with job are title and level.

[Fig. 13 : E-R diagram corresponding to employee, branch and job]

Reduction of an E-R diagrams to Tables

The E-R diagram can be represented by a collection of tables. For each entity set and

for each relationship set in the E-R diagram, there is a unique table to which we assign

the name of the corresponding entity set or relationship set. Following are the steps:

1. Representation of Entity sets:

An entity set E with attributes al, a2, a3, . . . , an is represented by a table called E

with n distinct columns, each of which corresponds to one of the attributes of the

entity set E. Each row in this table corresponds to one entity of the entity set E.

2. Representation of Relationship sets:

If R is a relationship set. This relationship set is represented by a table called R

with the primary key attributes of associated entity sets are taken as columns.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (14) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Example 1: Reduce the E-R diagram shown in Fig. 11(a) into tables.

Answer:

1. The entity set customer is treated as table and its attributes: customer-id, customer-

name, customer-street and customer-city are treated as columns of the table.

Thus CUSTOMER table is:

CUSTOMER(customer_id, customer_name, customer_street, customer_city)

 The primary key of table CUSTOMER is customer_id.

2. The entity set loan is treated as table and its attributes loan-number and amount are

treated as columns of the table.

Thus LOAN table is:

 LOAN(loan_number, amount)

 The primary key of table LOAN is loan_number.

3. Relationship set borrower will be treated as table in relational model. This

relationship set involves the two entity sets: customer and loan.

 customer, with the primary key customer-id

 loan, with the primary key loan-number

Thus BORROWER table is:

 BORROWER(customer_id, loan_number)

The primary key of table BORROWER is a combination of customer_id and

loan_number.

Thus, E-R diagram in Fig. 11 (a) is represented in relational model as follows:

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (15) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

 CUSTOMER (customer_id, customer_name,

customer_street, customer_city)

 LOAN (loan_number, amount)

 BORROWER (customer_id, loan_number)

Example 2: Reduce the E-R diagram shown in Fig. 12 into tables.

Answer:

 Apply the steps as shown in above example (example 1).

 E-R diagram in Fig. 12 is represented in relational model as follows:

 EMPLOYEE(employee_no, employee_name)

 PROJECT(project_number, project_name, chief_architect)

 ASSIGNED_TO (employee_no, project_number)

Example 3: Reduce the E-R diagram shown in Fig. 13 into tables.

Answer:

 Apply the steps as shown in above example (example 1).

 E-R diagram in Fig. 13 is represented in relational model as follows:

 EMPLOYEE (employee_no, employee_name, street, city)

 BRANCH (branch_name, branch_city, assets)

 JOB (title, level)

 WORKS_ON (employee_no, branch_name, title)

Functional Dependency (FD)

A functional dependency is a concept in database management that describes the

relationship between two attributes or set of attributes within a relation (table). In a table,

attributes (columns) are functionally dependent on one another; if the value of one

attribute uniquely determines the value of another attribute. Functional dependencies are

crucial for database design and normalization processes as they help ensure data integrity

and eliminate redundancy.

The Fundamental definition of functional dependency (FD) is

Given a relation R, attribute Y of R is functionally dependent on attribute

X of R i.e. X  Y, if and only if each X-value in R has associated with

precisely one Y- value in R.

The alternative definition of FD is:

Given a relation R, attribute Y of R is functionally dependent on attribute

X of R, if and only if, whenever two tuples of R agree on their X-value,

they also agree on their Y-value.

That is for any two tuples t1 and t2 of R, if t1[x] = t2[x], implies t1[y] = t2 [y].

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (16) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

 Notations of functional dependency

Functional Dependency is represented in the form of an equation. Here, you have

a set of attributes (A, B, C, etc.) and an arrow () denoting the Dependency. Suppose X

and Y are two attributes in a relation R, then the functional dependency is shown as:

 X  Y

The meaning of this notation is:

 “X” determines “Y”

 “Y” is functionally dependent on “X”

 “X” is called determinant

“Y” is called object of the determinant

Example:- Consider a relation/table called “Students” with attributes (columns)

“StudentID”, “Name”, “DOB”, and “Department”.

StudentID Name DOB Department

101 Smith 22-05-2004 Chemistry

102 John 14-04-2004 Mathematics

103 Blake 28-02-2004 Chemistry

Each student has a unique ID, in this case, the functional dependency would be:

StudentID  Name

StudentID  DOB

StudentID  Department

Name, DOB  Department

This means that given a StudentID, you can uniquely determine the associated

department. Similarly, given a combination of Name and DOB, you can also uniquely

determine the associated department.

However, it‟s important to note that the reverse is not necessarily true. That is,

given a department, you cannot necessarily determine the StudentID or the combination

of Name and DOB uniquely.

Normalization

Normalization is a process used in database design to organize data into tables in

such a way that redundancy and dependency are minimized. It involves breaking down a

table into smaller tables. Normalization helps in reducing data anomalies such as –

insertion, update, and deletion anomalies.

Normalization is a multi-step process, which consists of several steps and each

step referred to as a Normal Form. Basically, normalization is an iterative process,

meaning you might need to apply multiple normal forms to achieve the desired level of

data integrity and efficiency. However, it‟s also essential to balance normalization with

performance considerations. Over-normalization can lead to complex queries and slower

performance. The normal forms after each step is called first, second, third, fourth

normal forms.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (17) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

 Objectives of Normalization

The objectives of the normalization process are:

1. To make it possible to represent any relation in the database.

2. To free relations from undesirable insertion, updation and deletion anomalies.

3. Enforce Integrity Constrains.

4. To increase data consistency, minimal data redundancy and maximum stability.

Normal Form

A relation is said to be in a particular normal form if it satisfies a certain specified

set of constraints. Dr. Edgar F. Codd introduced the concept of normalization. Codd

originally defined first, second and third forms (1NF, 2NF, 3NF). Codd‟s original

definition of 3NF suffered from certain inadequacies. A revised stronger definition was

given by Boyce and Codd that was the new definition of 3NF sometimes called

Boyce/Codd Normal Form (BCNF). Normal forms that have been identified are:

 First Normal Form (1NF)  Fourth Normal Form (4NF)

 Second Normal Form (2NF)  Boyce-Codd Normal Form (BCNF)

 Third Normal Form (3NF)

[Fig. 14 : Levels of Normalization]

Each normal form contains in it the previous normal form(s). For example, If any

relation which is in 3NF is also a 2NF and 1NF relations. Informally, a relational

database table is often described as “normalized” if it meets 3NF. Most 3NF tables are

free of insertion, deletion and update anomalies.

 Unnormalized Relation

A relation is called unnormalized relation, if each tuple (row) may contains

multiple set of values for some of the attribute (column), these multiple values in a

single row are also called non-atomic values.

 Un-normalized Relation

 1NF

 2NF

 3NF

 BCNF

 4NF

 5NF

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (18) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Let us consider a LIBRARY_ISSUE table as shown below:

Mem_ID Mem_Name Contact Book_code Cat_code
Date

Issue Return

M001 Sachin 4142319 B0020 Science 18/03/98 18/04/98

M008 Rahul 8600909 B0189 Arts 18/03/98 18/04/98

 B0090 18/03/98 18/04/98

M067 Anil 4219498 B0656 Political 19/03/98 98/04/98

M123 Saurav 5670967 B0198 Classic 21/03/98 21/04/98

 B0212 21/03/98 21/04/98

 B0400 21/03/98 21/04/98

M880 Ajay 3289656 B0001 Economics 22/03/98 22/04/98

[Table 1 : Unnormalized LIBRARY_ISSUE Relation]

 In the above relation (Table-1), Date column contains set of values i.e. non-

atomic values and hence it is unnormalized relation.

First Normal Form (1NF)

A relation is said to be in First Normal Form (or 1NF) if

the values in the domain of each attribute are atomic; that

is they cannot be decomposed into component values.

Example :- Consider Table-1 LIBRARY_ISSUE, it is unnormalized relation. To

convert it into 1NF, remove the non-atomic values; make the attribute with atomic

values. A key that will uniquely identify each record should be assigned to the relation.

Here the primary key is a combination of Mem_ID and Book_code.

The normalized form of Table-1 is given below in Table-2:

Mem_ID Mem_Name Contact Book_code Cat_code Issue_Date Return_date

M001 Sachin 4142319 B0020 Science 18/03/98 18/04/98

M008 Rahul 8600909 B0189 Arts 18/03/98 18/04/98

M008 Rahul 8600909 B0090 Arts 18/03/98 18/04/98

M067 Anil 4219498 B0656 Political 19/03/98 98/04/98

M123 Saurav 5670967 B0198 Classic 21/03/98 21/04/98

M123 Saurav 5670967 B0212 Classic 21/03/98 21/04/98

M123 Saurav 5670967 B0400 Classic 21/03/98 21/04/98

M880 Ajay 3289656 B0001 Economics 22/03/98 22/04/98

[Table 2 : LIBRARY_ISSUE Relation in 1NF Form]

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (19) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Second Normal Form (2NF)

A relation R is in second normal form (2NF) if and only if

it is in 1NF and every non-key attribute is fully dependent

on the primary key and not on a part of the primary key.

Example :- Consider following table ADMISSION containing courses that are taken in

a certain semester, and it contains the following data:

|---Primary Key ---|

CourseID Semester #Places CourseName

IT101 2009-1 100 Programming

IT101 2009-2 100 Programming

IT102 2009-1 200 Databases

IT102 2009-1 150 Databases

IT103 2009-2 120 Web Design

[Table 3 : ADMISSION Relation not in 2NF Form]

In the above relation ADMISSION CourseID+Semester is a primary key and the

functional dependencies are:

 CourseID, Semester  #Places

 CourseID  CourseName

This is not in 2NF, because the fourth column CourseName does not fully

dependent upon the entire key CourseID+Semester - but only on a

CourseID i.e. part of it. Thus, we have duplicate information - several rows

telling us that IT101 is programming, and IT102 is Databases. So fix this by

converting ADMISSION relation into 2NF.

To convert into 2NF remove CourseName from ADMISSION table and put it into

new table called COURSE, where CourseID is the entire key. Now there is no

redundancy.

ADMISSION COURSE

|-Primary Key -|
Primary

Key

CourseID Semester #Places CourseID CourseName

IT101 2009-1 100 IT101 Programming

IT101 2009-2 100 IT102 Databases

IT102 2009-1 200 IT103 Web Design

IT102 2009-1 150

IT103 2009-2 120

 [Table 4 : ADMISSION Relation in 2NF Form]

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (20) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Third Normal Form (3NF)

A relation R is in third normal form (3NF) if and only if it is in

2NF and every non-key attribute is non-transitively dependent

on the primary key.

An attribute C is transitively dependent on attribute A if there
exists an attribute B such that: A  B and B  C.

Example :- Consider following relation ADMISSION containing courses that are

taken in a certain semester and the respective teachers for these courses:

|--Primary Key --|

CourseID Semester #Places TeacherID TeacherName

IT101 2009-1 100 332 Mr Jones

IT101 2009-2 100 332 Mr Jones

IT102 2009-1 200 495 Mr Bentley

IT102 2009-1 150 332 Mr Jones

IT103 2009-2 120 242 Mr Smith

[Table 5 : ADMISSION Relation not in 3NF Form]

In the above relation ADMISSION CourseID+Semester is a primary key and the

functional dependencies are:

 f 1: CourseID, Semester  #Places

 f 2: CourseID, Semester  TeacherID

 f 3: TeacherID  TeacherName

Now, by FDs f2 and f3, the TeacherName is dependent on TeacherID and

TeacherID dependent on primary key - so attribute TeacherName is

transitively dependent on primary key, thus, this is not in 3NF. To convert above

relation into 3NF- take TeacherName out of this table, and put it in new table

called TEACHER, which has TeacherID as the key.

ADMISSION TEACHER

|-Primary Key -|
Primary

Key

CourseID Semester #Places TeacherID TeacherID TeacherName

IT101 2009-1 100 332 332 Mr Jones

IT101 2009-2 100 332 495 Mr Bentley

IT102 2009-1 200 495 242 Mr Smith

IT102 2009-1 150 332

IT103 2009-2 120 242

[Table 6 : ADMISSION Relation in 3NF Form]

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (21) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Boyce-Codd Normal Form (BCNF)

Don’t write this in the answer

When a relation has more than one candidate key, anomalies may result even

though the relation is in 3NF. 3NF does not deal satisfactorily with the case of

a relation with overlapping candidate keys (i.e. composite candidate keys with

at least one attribute in common). Hence, new definition for 3NF i.e. required.

The new definition is due to Boyce and Codd; hence the term “Boyce/Codd

Normal Form” (BCNF) is often used to distinguish the new 3NF form the old.

The definition of BCNF is:

A relation R is in Boyce-Codd normal form (BCNF) if for

every nontrivial functional dependency XA, X is a

super key. In other words, a relation is in BCNF if and

only if, every determinant is a candidate key.

BCNF is based on the concept of a determinant. A determinant is any attribute

(simple or composite) on which some other attribute is fully functionally dependent.

Example :- Converting a Relation to BCNF

Consider the relation ADDRESS which has three attributes STREET, CITY, and ZIP

(Pin code).

ADDRESS (STREET, CITY, ZIP)

From the relation ADDRESS we have functional dependencies:

CITY, STREET  ZIP

ZIP  CITY

The relation ADDRESS is not in BCNF, because ZIP is not a superkey.

The relation ADDRESS has insertion anomaly, that is a city of ZIP code cannot

be stored if the street is not given. To overcome this insertion anomaly, the relation

ADDRESS has to be converted into BCNF. To do this, split relation ADDRESS into two

relations R1 and R2. The relation R1 has two attributes STREET, ZIP, and the relation

R2 has two attributes ZIP, CITY.

R1(STREET, ZIP) and

R2(ZIP, CITY)

The splitting of the relation ADDRESS into two relations R1 and R2 eliminates

insertion anomaly.

B.Sc.II (Semester IV) CBCS (2023-24) 2CS2 : RDBMS and Core Java

COMPUTER SCIENCE Unit-I : RDBMS

 (22) Prof. V. V. AGARKAR

D. M. Burungale Science & Arts College, Shegaon

Fourth Normal Form (4NF)

The definition of 4NF is:

A relation R is in fourth normal form (4NF) if and only if it is in

BCNF and, whenever there exists an multivalued dependency in

R (for example XY), at least one of the following holds:

The multivalued dependency is trivial or

X is a super key for relation R.

Example 9: Converting a Relation to Fourth Normal Form

Consider the relation EMPLOYEE with the attributes employee number (ENO),

project name (PNAME), and department name (DNAME) as shown below:

EMPLOYEE (ENO, PNAME, DNAME)

The relation EMPLOYEE has the following multivalued dependencies:

ENO  PNAME (One employee can work in several projects)

ENO  DNAME

ENO is not the superkey of the relation EMPLOYEE. To convert the relation to fourth

normal form decompose EMPLOYEE relation into two relations EMP-PROJ and EMP-

DEPT as shown below.

EMP_PROJ(ENO, PNAME) and EMP_DEPT(ENO, DNAME)

Now the relations EMP-PROJ and EMP-DEPT are in fourth normal form.

■ ■ ■ ■ ■

